The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibrat...The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.展开更多
With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent...With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time,since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly,this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough(q-ROPR)set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.展开更多
In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy sampl...In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective.展开更多
The requirement of fault diagnosis in the field of automobiles is growing higher day by day.The reliability of human resources for the fault diagnosis is uncertain.Brakes are one of the major critical components in au...The requirement of fault diagnosis in the field of automobiles is growing higher day by day.The reliability of human resources for the fault diagnosis is uncertain.Brakes are one of the major critical components in automobiles that require closer and active observation.This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis.Vibration signals of a rotating element contain dynamic information about its health condition.Hence,the vibration signals were used for the brake fault diagnosis study.The study was carried out on a brake fault diagnosis experimental setup.The vibration signals under different fault conditions were acquired from the setup using an accelerometer.The condition monitoring of the hydraulic brake system using the vibration signal was processed using a machine learning approach.The machine learning approach has three phases,namely,feature extraction,feature selection,and feature classification.Histogram features were extracted from the vibration signals.The prominent features were selected using the decision tree.The selected features were classified using a fuzzy classifier.The histogram features and the fuzzy classifier combination produced maximum classification accuracy than that of the statistical features.展开更多
The development of new wind energy project requires studying of many parameters to achieve maximum benefits at the cost of minimum environmental impacts. Using Geographic Information System (GIS), an analytical framew...The development of new wind energy project requires studying of many parameters to achieve maximum benefits at the cost of minimum environmental impacts. Using Geographic Information System (GIS), an analytical framework has been developed in this paper with fuzzy logic to evaluate the suitable site for turbines for optimum energy output. The criteria for suitable site for energy optimization are environmental, physical and human factors. The present study helps to assess the appropriate sites for the wind turbines in Gujarat. The result obtained from the study conveys the suitability of the development of wind turbines along the western parts of Gujarat. The suggested model could be used for the future site selection of the wind turbine which in turn could be of orientation for energy planners and decision makers.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
文摘The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.
基金This Project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under the Grant No.(G:578-135-1441)The authors,therefore,acknowledge with thanks DSR for technical and financial support.
文摘With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time,since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly,this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough(q-ROPR)set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.
基金supported by National Natural Science Foundation of China under Grant 60703013 and 10978011Key Program of National Natural Science Foundation of China under Grant 60932008+1 种基金National Science Fund for Distinguished Young Scholars under Grant 50925625China Postdoctoral Science Foundation.
文摘In many decision making tasks,the features and decision are ordinal.Several ordinal classification learning algorithms have been developed in recent years,it is shown that these algorithms are sensitive to noisy samples and do not work in real-world applications.In this work,we propose a new measure of feature quality, called rank mutual information.Then,we design an ordinal decision tree(REOT) construction technique based on rank mutual information.The theoretic and experimental analysis shows that the proposed algorithm is effective.
文摘The requirement of fault diagnosis in the field of automobiles is growing higher day by day.The reliability of human resources for the fault diagnosis is uncertain.Brakes are one of the major critical components in automobiles that require closer and active observation.This research work demonstrates a fault diagnosis technique for monitoring the hydraulic brake system using vibration analysis.Vibration signals of a rotating element contain dynamic information about its health condition.Hence,the vibration signals were used for the brake fault diagnosis study.The study was carried out on a brake fault diagnosis experimental setup.The vibration signals under different fault conditions were acquired from the setup using an accelerometer.The condition monitoring of the hydraulic brake system using the vibration signal was processed using a machine learning approach.The machine learning approach has three phases,namely,feature extraction,feature selection,and feature classification.Histogram features were extracted from the vibration signals.The prominent features were selected using the decision tree.The selected features were classified using a fuzzy classifier.The histogram features and the fuzzy classifier combination produced maximum classification accuracy than that of the statistical features.
文摘The development of new wind energy project requires studying of many parameters to achieve maximum benefits at the cost of minimum environmental impacts. Using Geographic Information System (GIS), an analytical framework has been developed in this paper with fuzzy logic to evaluate the suitable site for turbines for optimum energy output. The criteria for suitable site for energy optimization are environmental, physical and human factors. The present study helps to assess the appropriate sites for the wind turbines in Gujarat. The result obtained from the study conveys the suitability of the development of wind turbines along the western parts of Gujarat. The suggested model could be used for the future site selection of the wind turbine which in turn could be of orientation for energy planners and decision makers.