Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making i...Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.展开更多
The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the ...The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the Electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi time points and multi indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the Multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
Using the dynamic optimization theory, we described a decision-making model for farmer choosing land use when there are several different kinds of uses for land. To obtain an empirical model that could be easily appli...Using the dynamic optimization theory, we described a decision-making model for farmer choosing land use when there are several different kinds of uses for land. To obtain an empirical model that could be easily applied, decision rules for farmer with a single static expectation were given.展开更多
The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then t...The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.展开更多
The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the ...The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi-time points and multi-indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.展开更多
Security is an important component in the process of developing healthcare web applications.We need to ensure security maintenance;therefore the analysis of healthcare web application’s security risk is of utmost imp...Security is an important component in the process of developing healthcare web applications.We need to ensure security maintenance;therefore the analysis of healthcare web application’s security risk is of utmost importance.Properties must be considered to minimise the security risk.Additionally,security risk management activities are revised,prepared,implemented,tracked,and regularly set up efficiently to design the security of healthcare web applications.Managing the security risk of a healthcare web application must be considered as the key component.Security is,in specific,seen as an add-on during the development process of healthcare web applications,but not as the key problem.Researchers must ensure that security is taken into account right from the earlier developmental stages of the healthcare web application.In this row,the authors of this study have used the hesitant fuzzy-based AHP-TOPSIS technique to estimate the risks of various healthcare web applications for improving security-durability.This approach would help to design and incorporate security features in healthcare web applications that would be able to battle threats on their own,and not depend solely on the external security of healthcare web applications.Furthermore,in terms of healthcare web application’s security-durability,the security risk variable is measured,and vice versa.Hence,the findings of our study will also be useful in improving the durability of several web applications in healthcare.展开更多
In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support...In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.展开更多
There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater porti...There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater portion of uncultivable microorganisms. Due to difficulties to select the optimum DNA extraction method in view of downstream molecular analyses, this article presents a straightforward mathematical framework for comparing some of the most commonly used methods. Four commercial DNA extraction kits and two physical-chemical methods (bead-beating and freeze-thaw) were compared for the extraction of DNA under several quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A260/230 ratios), degradation degree of DNA, easiness of PCR amplification, duration of extraction, and cost per extraction. From a practical point of view, it is unlikely that a single DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed to compare the methods. The PowerSoil? DNA Isolation Kit was systematically defined as the best performing method for extracting DNA from soil samples. More specifically, for soil:manure and soil:manure:biochar mixtures, the PowerSoil?DNA Isolation Kit method performed best, while for neat soil samples its alternative version gained the first rank.展开更多
Through analyzing the life cycle cost of the water conservation and intermediate water application project of conservation-minded buildings,net present value(NPV) was applied as the index to establish the life cycle e...Through analyzing the life cycle cost of the water conservation and intermediate water application project of conservation-minded buildings,net present value(NPV) was applied as the index to establish the life cycle economic decision-making model.Monte Carlo simulation was used in demonstration cases,modeling analysis of water-saving projects in conservation-minded and traditional buildings verified rationality and practicability of this model and simulation method.It was to provide a referential and operable method for the decision-making of conservation-minded construction projects,as well as a scientific approach and theoretic basis for the precise decision-making of government organs,decision-making departments and developers.展开更多
The decision.making process of the public service facility configuration in multi.agent community is usually simplistic and static. In order to reflect dynamic changes and interactions of all behavior subjects indudin...The decision.making process of the public service facility configuration in multi.agent community is usually simplistic and static. In order to reflect dynamic changes and interactions of all behavior subjects induding of residents, real estate developers and the government, a decision-making model of public service facility configuration according to the multi-agent theory was made to improve the efficiency of the public service facility configuration in community and the living quality of residents. Taking a community to the cast of Jinhui Port in Fengxian District in Shanghai for example, the model analyzed the decision-makers' adaptive behaviors and simulated the decision.making criteria. The results indicate that the decision-making model and criteria can be well of satisfying the purpose of improving validity and rationality of public service facility configuration in large community.展开更多
A decision-making model of gear process for green manufacturing is presented, which integrates the five objectives including the time, quality, cost, resource consumption and environmental impact of gear process toget...A decision-making model of gear process for green manufacturing is presented, which integrates the five objectives including the time, quality, cost, resource consumption and environmental impact of gear process together into the development of a strategy. Mathematical description is provided for the multi-objectives decision-making model. The expert judgment and the multi-fuzzy assessment theory are introduced to do sensible comparisons and give quantitative results. A case study on practical cutting tool selection in gear machining demonstrates that the proposed model is applicable.展开更多
In order to identify the effective decision-making factors at the individual NPD project manager level, a new effective decision-making model has been established by introducing the concept of decision-making effectiv...In order to identify the effective decision-making factors at the individual NPD project manager level, a new effective decision-making model has been established by introducing the concept of decision-making effectiveness, analyzing the role of expertise, and identifying the major role of expertise and insight with respect to the interfaces between a new product, an organization, customers, technologies and regulations, for the study of the effective decision-making facilitators and inhibitors for a NPD project. The analysis of the unique task conditions for individual decision-makers shows that perceived complexity, uncertainty and time pressure have their negative effect on the effective decision-making process. It is concluded that the flexible, balanced and appropriate use of rational analysis, common sense and intuition is a key effective decision-making factor, and the psychologically ‘active attitude’ of a manager is also an important factor for successful dealing with the difficult task conditions.展开更多
Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot ...Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.展开更多
The 19th National Congress of the Communist Party of China has put forward higher requirements for Chinese government governance. The government governance has developed to a higher stage. Meanwhile, it faces more cha...The 19th National Congress of the Communist Party of China has put forward higher requirements for Chinese government governance. The government governance has developed to a higher stage. Meanwhile, it faces more challenges, like lack of top-level design and information sharing. To develop a government governance decision-making innovation model, we should make good use of big data to mine in the grassroots government data management network. Both the characteristics of the times and the experience of the practice have proven that big data can empower government governance and promote the construction of a service-oriented government.展开更多
Determining the importance ratings of technical characteristics is a typical group decision-making process. The linguistic-based approach can effectively manage the imprecise and multi-granularity information i;n qual...Determining the importance ratings of technical characteristics is a typical group decision-making process. The linguistic-based approach can effectively manage the imprecise and multi-granularity information i;n quality function deployment and facilitate decision-making in deriving the importance ratings. Based on the linguistic weighted averaging (LWA) operator and the linguistic hybrid averaging (LHA) operator, a practical approach is proposed to first aggregate the individual judgments into a collective value for each technical characteristic under linguistic environment, and then measure the deviation degree of linguistic variables to obtain the importance ratings of technical characteristics. A case study shows the application of the proposed method.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute uns...Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute unsustainability to inadequate provision of basic resources and highlight the apparent bottlenecks that prevent access to the meaningful data needed to plan and remedy problems. Most operations have relied on an “ad hoc ism” approach, employing parallel and disconnected data processing methods, resulting in a wide range of data being collected without subsequent prioritization to optimize interconnections that could enhance performance. There have been little efforts to study the trade-offs potentially at stake. This work proposes a new framework enabling all subsystems to operate in a single system and focusing on data processing perspective. To achieve this, this paper proposes a Triple Nexus Framework as an attempt to integrate water, energy, and housing sector data derived from a specific sub-system within the overall system in the application of Model-Based Systems Engineering. Understanding the synergies between water, energy, and housing, Systems Engineering characterizes the triple nexus framework and identifies opportunities for improved decision-making in processing operational data from these sectors. Two scenarios illustrate how an integrated platform could be a gateway to access meaningful operational data in the system and a starting point for modeling integrated human settlement systems. Upon execution, the model is tested for nexus megadata processing, and the optimization simulation yielded 67% satisfactory results, demonstrating that an integrated system could improve sustainability, and that capacity building in service delivery is more than beneficial.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
基金supported by National Basic Research Program (973 Program,No.2004CB719402)National Natural Science Foundation of China (No.60736019)Natural Science Foundation of Zhejiang Province, China(No.Y105430).
文摘Collision avoidance decision-making models of multiple agents in virtual driving environment are studied. Based on the behavioral characteristics and hierarchical structure of the collision avoidance decision-making in real life driving, delphi approach and mathematical statistics method are introduced to construct pair-wise comparison judgment matrix of collision avoidance decision choices to each collision situation. Analytic hierarchy process (AHP) is adopted to establish the agents' collision avoidance decision-making model. To simulate drivers' characteristics, driver factors are added to categorize driving modes into impatient mode, normal mode, and the cautious mode. The results show that this model can simulate human's thinking process, and the agents in the virtual environment can deal with collision situations and make decisions to avoid collisions without intervention. The model can also reflect diversity and uncertainly of real life driving behaviors, and solves the multi-objective, multi-choice ranking priority problem in multi-vehicle collision scenarios. This collision avoidance model of multi-agents model is feasible and effective, and can provide richer and closer-to-life virtual scene for driving simulator, reflecting real-life traffic environment more truly, this model can also promote the practicality of driving simulator.
文摘The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the Electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi time points and multi indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the Multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
文摘Using the dynamic optimization theory, we described a decision-making model for farmer choosing land use when there are several different kinds of uses for land. To obtain an empirical model that could be easily applied, decision rules for farmer with a single static expectation were given.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘The procedure of supply chain development is the process of continuously congregating knowledge and transforming knowledge.First,the precondition of synergic knowledge innovation in the supply chain is narrated.Then the characteristics of synergic knowledge innovation in the supply chain are analyzed,including complexity,accumulating and evolving process,and the cooperation of members and network integration.Due to the characteristics of multi-factors and uncertainties of the supply chain system,the fuzzy multi-attribution group decision-making model is introduced to solve the involved problem of synergic knowledge innovation in the supply chain.After elaborating on steps of using the fuzzy multiple attribute decision-making(MADM)model,the procedure of decision making for synergic knowledge innovation in the supply chain is explained from an example in the application of a fuzzy MADM model.The fuzzy MADM model,which amalgamates intuition and resolution decision-making can effectively improve the rationality of decision-making for synergic knowledge innovation in the supply chain.
文摘The characteristics of the financing model are firstly analyzed when the e-commerce enterprises participate in the supply chain finance. Internet supply chain finance models are divided into three categories with the standard of whether the electronic commerce enterprises provide funds for small and medium enterprises instead of banks. And then we further study the financing process and the functions of the e-commerce platform with specific examples. Finally, combined with the characteristics of the supply chain finance model, we set up a small and medium enterprises credit evaluation model based on the principle of variable weight with its dynamic data. At the same time, a multi-time points and multi-indicators decision-making method based on the principle of variable weight is proposed and a specific example is presented. In this paper, the multi-criteria decision-making model with the principle of variable weight has been used two times. At last, a typical case has been analyzed based on this model with a higher accuracy rate of credit risk assessment.
基金Funding for this study was received from the Ministry of Education and Deanship of Scientific Research at King Abdulaziz University,Kingdom of Saudi Arabia under Grant No.IFPHI-286-611-2020.
文摘Security is an important component in the process of developing healthcare web applications.We need to ensure security maintenance;therefore the analysis of healthcare web application’s security risk is of utmost importance.Properties must be considered to minimise the security risk.Additionally,security risk management activities are revised,prepared,implemented,tracked,and regularly set up efficiently to design the security of healthcare web applications.Managing the security risk of a healthcare web application must be considered as the key component.Security is,in specific,seen as an add-on during the development process of healthcare web applications,but not as the key problem.Researchers must ensure that security is taken into account right from the earlier developmental stages of the healthcare web application.In this row,the authors of this study have used the hesitant fuzzy-based AHP-TOPSIS technique to estimate the risks of various healthcare web applications for improving security-durability.This approach would help to design and incorporate security features in healthcare web applications that would be able to battle threats on their own,and not depend solely on the external security of healthcare web applications.Furthermore,in terms of healthcare web application’s security-durability,the security risk variable is measured,and vice versa.Hence,the findings of our study will also be useful in improving the durability of several web applications in healthcare.
基金supported by the Education Science Fund of the Military Science Institute of Beijing,China(2015JY320)
文摘In military service joint operations, when there are more operational forces, more multifarious materials are consumed, the support is more complex and fuzzy, the deployment of personnel is more rapid, and the support provided by wartime military material support powers can be more effective. When the principles,requirements, influencing factors and goals of military material support forces are deployed in wartime, an evaluation indicator system is established. Thus, a new combined empowerment method based on an analytic hierarchy process(AHP) is developed to calculate the subjective weights, and the rough entropy method is used to calculate the objective weights. Combination weights can be obtained by calculating the weight preference coefficient error, which is determined by combining the cooperative game method and the minimum deviation into objectives. This approach can determine the grey relation projection coefficient and synthesize the measure scheme superiority to finally optimize the deployment plan using the grey relation projection decision-making method. The results show that the method is feasible and effective;it can provide a more scientific and practical decision-making basis for the military material support power deployment in wartime.
文摘There is an increased interest in the extraction of nucleic acids from various environmental samples since culture-independent molecular techniques contribute to deepen and broaden the understanding of a greater portion of uncultivable microorganisms. Due to difficulties to select the optimum DNA extraction method in view of downstream molecular analyses, this article presents a straightforward mathematical framework for comparing some of the most commonly used methods. Four commercial DNA extraction kits and two physical-chemical methods (bead-beating and freeze-thaw) were compared for the extraction of DNA under several quantitative DNA analysis criteria: yield of extraction, purity of extracted DNA (A260/280 and A260/230 ratios), degradation degree of DNA, easiness of PCR amplification, duration of extraction, and cost per extraction. From a practical point of view, it is unlikely that a single DNA extraction strategy can be optimum for all selected criteria. Hence, a systematic Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was employed to compare the methods. The PowerSoil? DNA Isolation Kit was systematically defined as the best performing method for extracting DNA from soil samples. More specifically, for soil:manure and soil:manure:biochar mixtures, the PowerSoil?DNA Isolation Kit method performed best, while for neat soil samples its alternative version gained the first rank.
基金Supported by Foundation of Zhejiang Provincial Bureau of Construction:Economical Efficiency Study of Water-saving and Intermediate Water Recycling for Conservation-minded Buildings(0809)~~
文摘Through analyzing the life cycle cost of the water conservation and intermediate water application project of conservation-minded buildings,net present value(NPV) was applied as the index to establish the life cycle economic decision-making model.Monte Carlo simulation was used in demonstration cases,modeling analysis of water-saving projects in conservation-minded and traditional buildings verified rationality and practicability of this model and simulation method.It was to provide a referential and operable method for the decision-making of conservation-minded construction projects,as well as a scientific approach and theoretic basis for the precise decision-making of government organs,decision-making departments and developers.
基金National Natural Science Foundation of China(No.71403173)
文摘The decision.making process of the public service facility configuration in multi.agent community is usually simplistic and static. In order to reflect dynamic changes and interactions of all behavior subjects induding of residents, real estate developers and the government, a decision-making model of public service facility configuration according to the multi-agent theory was made to improve the efficiency of the public service facility configuration in community and the living quality of residents. Taking a community to the cast of Jinhui Port in Fengxian District in Shanghai for example, the model analyzed the decision-makers' adaptive behaviors and simulated the decision.making criteria. The results indicate that the decision-making model and criteria can be well of satisfying the purpose of improving validity and rationality of public service facility configuration in large community.
文摘A decision-making model of gear process for green manufacturing is presented, which integrates the five objectives including the time, quality, cost, resource consumption and environmental impact of gear process together into the development of a strategy. Mathematical description is provided for the multi-objectives decision-making model. The expert judgment and the multi-fuzzy assessment theory are introduced to do sensible comparisons and give quantitative results. A case study on practical cutting tool selection in gear machining demonstrates that the proposed model is applicable.
文摘In order to identify the effective decision-making factors at the individual NPD project manager level, a new effective decision-making model has been established by introducing the concept of decision-making effectiveness, analyzing the role of expertise, and identifying the major role of expertise and insight with respect to the interfaces between a new product, an organization, customers, technologies and regulations, for the study of the effective decision-making facilitators and inhibitors for a NPD project. The analysis of the unique task conditions for individual decision-makers shows that perceived complexity, uncertainty and time pressure have their negative effect on the effective decision-making process. It is concluded that the flexible, balanced and appropriate use of rational analysis, common sense and intuition is a key effective decision-making factor, and the psychologically ‘active attitude’ of a manager is also an important factor for successful dealing with the difficult task conditions.
基金supported in part by the Beijing Municipal Science and Technology Project(No.Z191100007419010)Automobile Industry Joint Fund(No.U1764261)of the National Natural Science Foundation of China+1 种基金Shandong Key R&D Program(No.2020CXGC010118)Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province(No.BM20082061706)。
文摘Behavioral decision-making at urban intersections is one of the primary difficulties currently impeding the development of intelligent vehicle technology.The problem is that existing decision-making algorithms cannot effectively deal with complex random scenarios at urban intersections.To deal with this,a deep deterministic policy gradient(DDPG)decision-making algorithm(T-DDPG)based on a time-series Markov decision process(T-MDP)was developed,where the state was extended to collect observations from several consecutive frames.Experiments found that T-DDPG performed better in terms of convergence and generalizability in complex intersection scenarios than a traditional DDPG algorithm.Furthermore,model-agnostic meta-learning(MAML)was incorporated into the T-DDPG algorithm to improve the training method,leading to a decision algorithm(T-MAML-DDPG)based on a secondary gradient.Simulation experiments of intersection scenarios were carried out on the Gym-Carla platform to verify and compare the decision models.The results showed that T-MAML-DDPG was able to easily deal with the random states of complex intersection scenarios,which could improve traffic safety and efficiency.The above decision-making models based on meta-reinforcement learning are significant for enhancing the decision-making ability of intelligent vehicles at urban intersections.
文摘The 19th National Congress of the Communist Party of China has put forward higher requirements for Chinese government governance. The government governance has developed to a higher stage. Meanwhile, it faces more challenges, like lack of top-level design and information sharing. To develop a government governance decision-making innovation model, we should make good use of big data to mine in the grassroots government data management network. Both the characteristics of the times and the experience of the practice have proven that big data can empower government governance and promote the construction of a service-oriented government.
基金Supported by Natural Science Foundation(70971017)
文摘Determining the importance ratings of technical characteristics is a typical group decision-making process. The linguistic-based approach can effectively manage the imprecise and multi-granularity information i;n quality function deployment and facilitate decision-making in deriving the importance ratings. Based on the linguistic weighted averaging (LWA) operator and the linguistic hybrid averaging (LHA) operator, a practical approach is proposed to first aggregate the individual judgments into a collective value for each technical characteristic under linguistic environment, and then measure the deviation degree of linguistic variables to obtain the importance ratings of technical characteristics. A case study shows the application of the proposed method.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
文摘Given the challenges facing most humanitarian operations worldwide, a change of approach is needed to ensure greater sustainability of humanitarian settlements right from the planning stage. Some studies attribute unsustainability to inadequate provision of basic resources and highlight the apparent bottlenecks that prevent access to the meaningful data needed to plan and remedy problems. Most operations have relied on an “ad hoc ism” approach, employing parallel and disconnected data processing methods, resulting in a wide range of data being collected without subsequent prioritization to optimize interconnections that could enhance performance. There have been little efforts to study the trade-offs potentially at stake. This work proposes a new framework enabling all subsystems to operate in a single system and focusing on data processing perspective. To achieve this, this paper proposes a Triple Nexus Framework as an attempt to integrate water, energy, and housing sector data derived from a specific sub-system within the overall system in the application of Model-Based Systems Engineering. Understanding the synergies between water, energy, and housing, Systems Engineering characterizes the triple nexus framework and identifies opportunities for improved decision-making in processing operational data from these sectors. Two scenarios illustrate how an integrated platform could be a gateway to access meaningful operational data in the system and a starting point for modeling integrated human settlement systems. Upon execution, the model is tested for nexus megadata processing, and the optimization simulation yielded 67% satisfactory results, demonstrating that an integrated system could improve sustainability, and that capacity building in service delivery is more than beneficial.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.