It is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost l...It is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost loss has the advantage of processing decision-making problems from multi-levels and multi-angles,and the neighbourhood rough set model(NRS)can facilitate the analysis and processing of numerical or mixed type data,and can address the limitation of multigranulation decision-theoretic rough sets(MG-DTRS),which is not easy to cope with complex data.Based on the in-depth study of hybrid-valued decision systems and MG-DTRS models,this study analysed neigh-bourhood MG-DTRS(NMG-DTRS)deeply by fusing MG-DTRS and NRS;a matrix-based approach for approximation sets of NMG-DTRS model was proposed on the basis of the matrix representations of concepts;the positive,boundary and negative domains were constructed from the matrix perspective,and the concept of positive decision recognition rate was introduced.Furthermore,the authors explored the related properties of NMG-DTRS model,and designed and described the corresponding solving algorithms in detail.Finally,some experimental results that were employed not only verified the effectiveness and feasibility of the proposed algorithm,but also showed the relationship between the decision recognition rate and the granularity and threshold.展开更多
Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificati...Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.展开更多
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
This article focuses on the relationship between mathematical morphology operations and rough sets,mainly based on the context of image retrieval and the basic image correspondence problem.Mathematical morphological p...This article focuses on the relationship between mathematical morphology operations and rough sets,mainly based on the context of image retrieval and the basic image correspondence problem.Mathematical morphological procedures and set approximations in rough set theory have some clear parallels.Numerous initiatives have been made to connect rough sets with mathematical morphology.Numerous significant publications have been written in this field.Others attempt to show a direct connection between mathematical morphology and rough sets through relations,a pair of dual operations,and neighborhood systems.Rough sets are used to suggest a strategy to approximatemathematicalmorphology within the general paradigm of soft computing.A single framework is defined using a different technique that incorporates the key ideas of both rough sets and mathematical morphology.This paper examines rough set theory from the viewpoint of mathematical morphology to derive rough forms of themorphological structures of dilation,erosion,opening,and closing.These newly defined structures are applied to develop algorithm for the differential analysis of chest X-ray images from a COVID-19 patient with acute pneumonia and a health subject.The algorithm and rough morphological operations show promise for the delineation of lung occlusion in COVID-19 patients from chest X-rays.The foundations of mathematical morphology are covered in this article.After that,rough set theory ideas are taken into account,and their connections are examined.Finally,a suggested image retrieval application of the concepts from these two fields is provided.展开更多
For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy...A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.展开更多
基金the Universities Natural Science Key Project of Anhui Province,Grant/Award Number:KJ2020A0637。
文摘It is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost loss has the advantage of processing decision-making problems from multi-levels and multi-angles,and the neighbourhood rough set model(NRS)can facilitate the analysis and processing of numerical or mixed type data,and can address the limitation of multigranulation decision-theoretic rough sets(MG-DTRS),which is not easy to cope with complex data.Based on the in-depth study of hybrid-valued decision systems and MG-DTRS models,this study analysed neigh-bourhood MG-DTRS(NMG-DTRS)deeply by fusing MG-DTRS and NRS;a matrix-based approach for approximation sets of NMG-DTRS model was proposed on the basis of the matrix representations of concepts;the positive,boundary and negative domains were constructed from the matrix perspective,and the concept of positive decision recognition rate was introduced.Furthermore,the authors explored the related properties of NMG-DTRS model,and designed and described the corresponding solving algorithms in detail.Finally,some experimental results that were employed not only verified the effectiveness and feasibility of the proposed algorithm,but also showed the relationship between the decision recognition rate and the granularity and threshold.
文摘Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
文摘The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
文摘This article focuses on the relationship between mathematical morphology operations and rough sets,mainly based on the context of image retrieval and the basic image correspondence problem.Mathematical morphological procedures and set approximations in rough set theory have some clear parallels.Numerous initiatives have been made to connect rough sets with mathematical morphology.Numerous significant publications have been written in this field.Others attempt to show a direct connection between mathematical morphology and rough sets through relations,a pair of dual operations,and neighborhood systems.Rough sets are used to suggest a strategy to approximatemathematicalmorphology within the general paradigm of soft computing.A single framework is defined using a different technique that incorporates the key ideas of both rough sets and mathematical morphology.This paper examines rough set theory from the viewpoint of mathematical morphology to derive rough forms of themorphological structures of dilation,erosion,opening,and closing.These newly defined structures are applied to develop algorithm for the differential analysis of chest X-ray images from a COVID-19 patient with acute pneumonia and a health subject.The algorithm and rough morphological operations show promise for the delineation of lung occlusion in COVID-19 patients from chest X-rays.The foundations of mathematical morphology are covered in this article.After that,rough set theory ideas are taken into account,and their connections are examined.Finally,a suggested image retrieval application of the concepts from these two fields is provided.
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
文摘A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.