This paper attempts to explore potential benefits of form in a deck-type reinforced concrete(RC) arch bridge in connection with its overall seismic behavior and performance. Through a detailed three-dimensional fini...This paper attempts to explore potential benefits of form in a deck-type reinforced concrete(RC) arch bridge in connection with its overall seismic behavior and performance. Through a detailed three-dimensional finite element modeling and analysis of an actual existing deck-type RC arch bridge, some useful quantitative information have been derived that may serve for a better understanding of the seismic behavior of such arch bridges. A series of the nonlinear dynamic analyses has been carried out under the action of seven different time histories of ground motion scaled to the AASHTO 2012 response spectrum. The concept of demand to capacity ratios has been employed to provide an initial estimation of the seismic performance of the bridge members. As a consequence of the structural form, a particular type of irregularity is introduced due to variable heights of columns transferring the deck loads to the main arch. Hence, a particular attention has been paid to the internal force/moment distributions within the short, medium, and long columns as well as along the main arch. A study of the effects of the vertical component of ground motion has demonstrated the need for the inclusion of these effects in the analysis of such bridges.展开更多
Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to ...Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell,by means of expanding field quantities as Legendre series,a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate,which has a satisfactory computational effectiveness and precision for an arbitrary frequency range.It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed.It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell,and give the coupling system a very rich resonance frequency spectrum.Moreover,the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.展开更多
文摘This paper attempts to explore potential benefits of form in a deck-type reinforced concrete(RC) arch bridge in connection with its overall seismic behavior and performance. Through a detailed three-dimensional finite element modeling and analysis of an actual existing deck-type RC arch bridge, some useful quantitative information have been derived that may serve for a better understanding of the seismic behavior of such arch bridges. A series of the nonlinear dynamic analyses has been carried out under the action of seven different time histories of ground motion scaled to the AASHTO 2012 response spectrum. The concept of demand to capacity ratios has been employed to provide an initial estimation of the seismic performance of the bridge members. As a consequence of the structural form, a particular type of irregularity is introduced due to variable heights of columns transferring the deck loads to the main arch. Hence, a particular attention has been paid to the internal force/moment distributions within the short, medium, and long columns as well as along the main arch. A study of the effects of the vertical component of ground motion has demonstrated the need for the inclusion of these effects in the analysis of such bridges.
基金Project supported by the National Natural Science Foundation of China(No.10172038).
文摘Based on the motion differential equations of vibration and acoustic coupling system for thin elastic spherical shell with an elastic plate attached to its internal surface,in which Dirac-δ functions are employed to introduce the moments and forces applied by the attachment on the surface of shell,by means of expanding field quantities as Legendre series,a semi-analytic solution is derived for the vibration and acoustic radiation from a submerged stiffened spherical shell with a deck-type internal plate,which has a satisfactory computational effectiveness and precision for an arbitrary frequency range.It is easy to analyze the effect of the internal plate on the acoustic radiation field by using the formulas obtained by the method proposed.It is concluded that the internal plate can significantly change the mechanical and acoustic characteristics of shell,and give the coupling system a very rich resonance frequency spectrum.Moreover,the method can be used to study the acoustic radiation mechanism in similar structures as the one studied here.