期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Swin Transformer的中心点目标检测算法
1
作者
刘家森
黄俊
《计算机科学》
CSCD
北大核心
2024年第6期264-271,共8页
针对Swin Transformer在提取局部特征信息和特征表达能力上存在的不足,提出了一种基于改进Swin Transformer的中心点目标检测算法,以提高其在目标检测方面的性能。通过调整网络结构和引入反卷积模块来增强网络对局部特征信息的提取能力...
针对Swin Transformer在提取局部特征信息和特征表达能力上存在的不足,提出了一种基于改进Swin Transformer的中心点目标检测算法,以提高其在目标检测方面的性能。通过调整网络结构和引入反卷积模块来增强网络对局部特征信息的提取能力,利用自适应二维高斯核和回归头模块检测目标中心点来增强特征表达能力,并在Swin Transformer block模块中加入dropout激活函数,以缓解网络过拟合问题。在Pascal VOC和MS COCO 2017数据集上分别对改进后的算法进行验证,实验结果表明,改进后的Swin Transformer算法在Pascal VOC数据集上的精确度达到了81.1%,在MS COCO数据集上的精确度达到了37.2%,明显优于其他主流目标检测算法。
展开更多
关键词
深度学习
图像处理
目标检测
反卷积
Swin
Transformer
下载PDF
职称材料
题名
基于改进Swin Transformer的中心点目标检测算法
1
作者
刘家森
黄俊
机构
重庆邮电大学通信与信息工程学院
出处
《计算机科学》
CSCD
北大核心
2024年第6期264-271,共8页
基金
国家自然科学基金(61771085)。
文摘
针对Swin Transformer在提取局部特征信息和特征表达能力上存在的不足,提出了一种基于改进Swin Transformer的中心点目标检测算法,以提高其在目标检测方面的性能。通过调整网络结构和引入反卷积模块来增强网络对局部特征信息的提取能力,利用自适应二维高斯核和回归头模块检测目标中心点来增强特征表达能力,并在Swin Transformer block模块中加入dropout激活函数,以缓解网络过拟合问题。在Pascal VOC和MS COCO 2017数据集上分别对改进后的算法进行验证,实验结果表明,改进后的Swin Transformer算法在Pascal VOC数据集上的精确度达到了81.1%,在MS COCO数据集上的精确度达到了37.2%,明显优于其他主流目标检测算法。
关键词
深度学习
图像处理
目标检测
反卷积
Swin
Transformer
Keywords
Deep learning
Image processing
Object detection
deconv
Swin Transformer
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Swin Transformer的中心点目标检测算法
刘家森
黄俊
《计算机科学》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部