In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficien...In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.展开更多
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un...Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.展开更多
Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade.One of the most tedious tasks is to track a suspect once a crime is co...Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade.One of the most tedious tasks is to track a suspect once a crime is committed.As most of the crimes are committed by individuals who have a history of felonies,it is essential for a monitoring system that does not just detect the person’s face who has committed the crime,but also their identity.Hence,a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network(DNN)model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been proposed.After detection and extraction of the face in the image by face cropping,the captured face is then compared with the images in the CriminalDatabase.The comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity metric.After plotting the values in a graph to find the threshold value,we conclude that the confidence rate of the encoder model is 0.75 and above.展开更多
In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting...In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting software or what we call malicious software otherwise anomalies.The presence of anomalies is also one of the disadvantages,internet users are constantly plagued by virus on their system and get activated when a harmless link is clicked on,this a case of true benign detected as false.Deep learning is very adept at dealing with such cases,but sometimes it has its own faults when dealing benign cases.Here we tend to adopt a dynamic control system(DCSYS)that addresses data packets based on benign scenario to truly report on false benign and exclude anomalies.Its performance is compared with artificial neural network auto-encoders to define its predictive power.Results show that though physical systems can adapt securely,it can be used for network data packets to identify true benign cases.展开更多
Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and co...Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and coupling of processes in a distillation column, it is difficult to use deep auto-encoders(DAEs) alone to achieve good results in detecting and diagnosing faults, in terms of accuracy and efficiency. This paper proposes a hybrid fault-diagnosis model based on convolutional neural networks(CNNs) and DAEs, by integrating the powerful capability of CNN in feature extraction and of DAE in classification. A case study was carried out with the distillation process of depropanization. It is shown that the proposed hybrid model is of good performance compared to other models, in terms of the accuracy of fault detection in such a process. Also, with the increase of structural layers of the CNN–DAE model, the diagnostic accuracy will be improved, with an optimal accuracy of 92.2%.展开更多
In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and trans...In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.展开更多
Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the litera...Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods.展开更多
Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generali...Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147.展开更多
文摘In recent years,computer visionfinds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture.Auto-matic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies.Waterways being an important medium of transport require continuous monitoring for protection of national security.The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea.This paper proposes a deep learning based model capable enough to classify between ships and no-ships as well as to localize ships in the original images using bounding box tech-nique.Furthermore,classified ships are again segmented with deep learning based auto-encoder model.The proposed model,in terms of classification,provides suc-cessful results generating 99.5%and 99.2%validation and training accuracy respectively.The auto-encoder model also produces 85.1%and 84.2%validation and training accuracies.Moreover the IoU metric of the segmented images is found to be of 0.77 value.The experimental results reveal that the model is accu-rate and can be implemented for automatic ship detection in water bodies consid-ering remote sensing satellite images as input to the computer vision system.
基金supported in part by the National Natural Science Foundation of China(No.51606213)the National Major Science and Technology Projects(No.J2019-III-0010-0054)。
文摘Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.
文摘Occurrence of crimes has been on the constant rise despite the emerging discoveries and advancements in the technological field in the past decade.One of the most tedious tasks is to track a suspect once a crime is committed.As most of the crimes are committed by individuals who have a history of felonies,it is essential for a monitoring system that does not just detect the person’s face who has committed the crime,but also their identity.Hence,a smart criminal detection and identification system that makes use of the OpenCV Deep Neural Network(DNN)model which employs a Single Shot Multibox Detector for detection of face and an auto-encoder model in which the encoder part is used for matching the captured facial images with the criminals has been proposed.After detection and extraction of the face in the image by face cropping,the captured face is then compared with the images in the CriminalDatabase.The comparison is performed by calculating the similarity value between each pair of images that are obtained by using the Cosine Similarity metric.After plotting the values in a graph to find the threshold value,we conclude that the confidence rate of the encoder model is 0.75 and above.
文摘In network settings,one of the major disadvantages that threaten the network protocols is the insecurity.In most cases,unscrupulous people or bad actors can access information through unsecured connections by planting software or what we call malicious software otherwise anomalies.The presence of anomalies is also one of the disadvantages,internet users are constantly plagued by virus on their system and get activated when a harmless link is clicked on,this a case of true benign detected as false.Deep learning is very adept at dealing with such cases,but sometimes it has its own faults when dealing benign cases.Here we tend to adopt a dynamic control system(DCSYS)that addresses data packets based on benign scenario to truly report on false benign and exclude anomalies.Its performance is compared with artificial neural network auto-encoders to define its predictive power.Results show that though physical systems can adapt securely,it can be used for network data packets to identify true benign cases.
基金Supported by the National Natural Science Foundation of China(21706291,61751305)
文摘Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and coupling of processes in a distillation column, it is difficult to use deep auto-encoders(DAEs) alone to achieve good results in detecting and diagnosing faults, in terms of accuracy and efficiency. This paper proposes a hybrid fault-diagnosis model based on convolutional neural networks(CNNs) and DAEs, by integrating the powerful capability of CNN in feature extraction and of DAE in classification. A case study was carried out with the distillation process of depropanization. It is shown that the proposed hybrid model is of good performance compared to other models, in terms of the accuracy of fault detection in such a process. Also, with the increase of structural layers of the CNN–DAE model, the diagnostic accuracy will be improved, with an optimal accuracy of 92.2%.
基金supported by the National Natural Science Foundation of China(Nos.11975292,12222512)the CAS"Light of West Chin"Program+1 种基金the CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)。
文摘In this paper,we propose Hformer,a novel supervised learning model for low-dose computer tomography(LDCT)denoising.Hformer combines the strengths of convolutional neural networks for local feature extraction and transformer models for global feature capture.The performance of Hformer was verified and evaluated based on the AAPM-Mayo Clinic LDCT Grand Challenge Dataset.Compared with the former representative state-of-the-art(SOTA)model designs under different architectures,Hformer achieved optimal metrics without requiring a large number of learning parameters,with metrics of33.4405 PSNR,8.6956 RMSE,and 0.9163 SSIM.The experiments demonstrated designed Hformer is a SOTA model for noise suppression,structure preservation,and lesion detection.
文摘Forecasting wind speed is an extremely complicated and challenging problem due to its chaotic nature and its dependence on several atmospheric conditions.Although there are several intelligent techniques in the literature for wind speed prediction,their accuracies are not yet very reliable.Therefore,in this paper,a new hybrid intelligent technique named the deep mixed kernel random vector functional-link network auto-encoder(AE)is proposed for wind speed prediction.The proposed method eliminates manual tuning of hidden nodes with random weights and biases,providing prediction model generalization and representation learning.This reduces reconstruction error due to the exact inversion of the kernel matrix,unlike the pseudo-inverse in a random vector functional-link network,and short-ens the execution time.Furthermore,the presence of a direct link from the input to the output reduces the complexity of the prediction model and improves the prediction accuracy.The kernel parameters and coefficients of the mixed kernel system are optimized using a new chaotic sine–cosine Levy flight optimization technique.The lowest errors in terms of mean absolute error(0.4139),mean absolute percentage error(4.0081),root mean square error(0.4843),standard deviation error(1.1431)and index of agreement(0.9733)prove the efficiency of the proposed model in comparison with other deep learning models such as deep AEs,deep kernel extreme learning ma-chine AEs,deep kernel random vector functional-link network AEs,benchmark models such as least square support vector machine,autoregressive integrated moving average,extreme learning machines and their hybrid models along with different state-of-the-art methods.
文摘Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147.
文摘为了解决传统径向基(Radial basis function,RBF)神经网络在语音识别任务中基函数中心值和半径随机初始化的问题,从人脑对语音感知的分层处理机理出发,提出利用大量无标签数据初始化网络参数的无监督预训练方式代替传统随机初始化方法,使用深度自编码网络作为语音识别的声学模型,分析梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)和基于Gammatone听觉滤波器频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)下非特定人小词汇量孤立词的抗噪性能。实验结果表明,深度自编码网络在MFCC特征下较径向基神经网络表现出更优越的抗噪性能;而与经典的MFCC特征相比,GFCC特征在深度自编码网络下平均识别率相对提升1.87%。