This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution pric...This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.展开更多
Restricted Boltzmann Machines (RBMs) are an effective model for machine learning;however, they require a significant amount of processing time. In this study, we propose a highly parallel, highly flexible architecture...Restricted Boltzmann Machines (RBMs) are an effective model for machine learning;however, they require a significant amount of processing time. In this study, we propose a highly parallel, highly flexible architecture that combines small and completely parallel RBMs. This proposal addresses problems associated with calculation speed and exponential increases in circuit scale. We show that this architecture can optionally respond to the trade-offs between these two problems. Furthermore, our FPGA implementation performs at a 134 times processing speed up factor with respect to a conventional CPU.展开更多
This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detec...This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detection,and the principles regarding DBN are discussed.The DBN is composed of a multiple unsupervised restricted Boltzmann machine (RBM) and a supervised back propagation (BP)network.First,the DBN in the proposed model is pre-trained in a fast and greedy way,and each RBM is trained by the contrastive divergence algorithm.Secondly,the whole network is fine-tuned by the supervised BP algorithm,which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously.The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps (SOM)and neural network (NN)in intrusion classification.Therefore,the DBN is an efficient approach for intrusion detection in high-dimensional space.展开更多
In this paper, we provide a new approach to classify and recognize the acoustic events for multiple autonomous robots systems based on the deep learning mechanisms. For disaster response robotic systems, recognizing c...In this paper, we provide a new approach to classify and recognize the acoustic events for multiple autonomous robots systems based on the deep learning mechanisms. For disaster response robotic systems, recognizing certain acoustic events in the noisy environment is very effective to perform a given operation. As a new approach, trained deep learning networks which are constructed by RBMs, classify the acoustic events from input waveform signals. From the experimental results, usefulness of our approach is discussed and verified.展开更多
To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establis...To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establish the nonlinear mapping relationship between the mode shape and structural damage.The hidden layer of the DBN is trained through a layer-by-layer pre-training.Finally,the backpropagation algorithm is used to fine-tune the entire network.The method is validated using a numerical model of a steel truss bridge.The results show that under the influence of noise and modeling uncertainty,the damage identification method based on the DBN can identify the accurate damage location and degree identification compared with the traditional damage identification method based on an artificial neural network.展开更多
Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly impro...Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly improved modeling power, and Restricted Boltzmann Machines (RBM) are universal approximators of discrete distributions. In this paper, we provide yet another proof. The advantage of this new proof is that it will lead to several new learning algorithms. We prove that the Deep Neural Networks implement an expansion and the expansion is complete. First, we briefly review the basic Boltzmann Machine and that the invariant distributions of the Boltzmann Machine generate Markov chains. We then review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. We further review ABM (Attrasoft Boltzmann Machine). The invariant distribution of the ABM is a θ-transformation;therefore, an ABM can simulate any distribution. We discuss how to convert an ABM into a Deep Neural Network. Finally, by establishing the equivalence between an ABM and the Deep Neural Network, we prove that the Deep Neural Network is complete.展开更多
The collaborative filtering(CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-b...The collaborative filtering(CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-based restricted Boltzmann machine(RBM) approach for CF and use the deep multilayer RBM network structure, which alleviates the data sparsity problem and has excellent ability to extract features. Each item is treated as a single RBM, and different items share the same weights and biases. The parameters are learned layer by layer in the deep network. The batch gradient descent algorithm with minibatch is used to increase the convergence speed. The new feature vector discovered by the multilayer RBM network structure is very effective in predicting a rating and achieves a better result. Experimental results on the data set of MovieL ens show that the item-based multilayer RBM approach achieves the best performance, with a mean absolute error of 0.6424 and a root-mean-square error of 0.7843.展开更多
Facial expression and emotion recognition from thermal infrared images has attracted more and more attentions in recent years. However, the features adopted in current work are either temperature statistical parameter...Facial expression and emotion recognition from thermal infrared images has attracted more and more attentions in recent years. However, the features adopted in current work are either temperature statistical parameters extracted from the facial regions of interest or several hand-crafted features that are commonly used in visible spectrum. Till now there are no image features specially designed for thermal infrared images. In this paper, we propose using the deep Boltzmann machine to learn thermal features for emotion recognition from thermal infrared facial images. First, the face is located and normalized from the thermal infrared im- ages. Then, a deep Boltzmann machine model composed of two layers is trained. The parameters of the deep Boltzmann machine model are further fine-tuned for emotion recognition after pre-tralning of feature learning. Comparative experimental results on the NVIE database demonstrate that our approach outperforms other approaches using temperature statistic features or hand-crafted features borrowed from visible domain. The learned features from the forehead, eye, and mouth are more effective for discriminating valence dimension of emotion than other facial areas. In addition, our study shows that adding unlabeled data from other database during training can also improve feature learning performance.展开更多
基金the National Key Research and Development Program of China(Grant No.2020YFB1707804)the 2018 Key Projects of Philosophy and Social Sciences Research(Grant No.18JZD032)Natural Science Foundation of Hebei Province(Grant No.G2020403008).
文摘This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann machine(DRBM)optimized by the Lion algorithm(LA).Firstly,two factors including transmission and distribution price reform(TDPR)and 5G station construction were comprehensively incorporated into the consideration of influencing factors,and the fuzzy threshold method was used to screen out critical influencing factors.Then,the LA was used to optimize the parameters of the DRBM model to improve the model’s prediction accuracy,and the model was trained with the selected influencing factors and investment.Finally,the LA-DRBM model was used to predict the investment of a power grid enterprise,and the final prediction result was obtained by modifying the initial result with the modifying factors.The LA-DRBMmodel compensates for the deficiency of the singlemodel,and greatly improves the investment prediction accuracy of the power grid.In this study,a power grid enterprise was taken as an example to carry out an empirical analysis to prove the validity of the model,and a comparison with the RBM,support vector machine(SVM),back propagation neural network(BPNN),and regression model was conducted to verify the superiority of the model.The conclusion indicates that the proposed model has a strong generalization ability and good robustness,is able to abstract the combination of low-level features into high-level features,and can improve the efficiency of the model’s calculations for investment prediction of power grid enterprises.
文摘Restricted Boltzmann Machines (RBMs) are an effective model for machine learning;however, they require a significant amount of processing time. In this study, we propose a highly parallel, highly flexible architecture that combines small and completely parallel RBMs. This proposal addresses problems associated with calculation speed and exponential increases in circuit scale. We show that this architecture can optionally respond to the trade-offs between these two problems. Furthermore, our FPGA implementation performs at a 134 times processing speed up factor with respect to a conventional CPU.
基金The National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2013BAK01B02)the National Natural Science Foundation of China(No.61373176)the Scientific Research Projects of Shaanxi Educational Committee(No.14JK1693)
文摘This paper focuses on the intrusion classification of huge amounts of data in a network intrusion detection system. An intrusion detection model based on deep belief nets (DBN) is proposed to conduct intrusion detection,and the principles regarding DBN are discussed.The DBN is composed of a multiple unsupervised restricted Boltzmann machine (RBM) and a supervised back propagation (BP)network.First,the DBN in the proposed model is pre-trained in a fast and greedy way,and each RBM is trained by the contrastive divergence algorithm.Secondly,the whole network is fine-tuned by the supervised BP algorithm,which is employed for classifying the low-dimensional features of the intrusion data generated by the last RBM layer simultaneously.The experimental results on the KDD CUP 1999 dataset demonstrate that the DBN using the RBM network with three or more layers outperforms the self-organizing maps (SOM)and neural network (NN)in intrusion classification.Therefore,the DBN is an efficient approach for intrusion detection in high-dimensional space.
文摘In this paper, we provide a new approach to classify and recognize the acoustic events for multiple autonomous robots systems based on the deep learning mechanisms. For disaster response robotic systems, recognizing certain acoustic events in the noisy environment is very effective to perform a given operation. As a new approach, trained deep learning networks which are constructed by RBMs, classify the acoustic events from input waveform signals. From the experimental results, usefulness of our approach is discussed and verified.
基金The National Natural Science Foundation of China(No.51378104)。
文摘To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establish the nonlinear mapping relationship between the mode shape and structural damage.The hidden layer of the DBN is trained through a layer-by-layer pre-training.Finally,the backpropagation algorithm is used to fine-tune the entire network.The method is validated using a numerical model of a steel truss bridge.The results show that under the influence of noise and modeling uncertainty,the damage identification method based on the DBN can identify the accurate damage location and degree identification compared with the traditional damage identification method based on an artificial neural network.
文摘Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly improved modeling power, and Restricted Boltzmann Machines (RBM) are universal approximators of discrete distributions. In this paper, we provide yet another proof. The advantage of this new proof is that it will lead to several new learning algorithms. We prove that the Deep Neural Networks implement an expansion and the expansion is complete. First, we briefly review the basic Boltzmann Machine and that the invariant distributions of the Boltzmann Machine generate Markov chains. We then review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. We further review ABM (Attrasoft Boltzmann Machine). The invariant distribution of the ABM is a θ-transformation;therefore, an ABM can simulate any distribution. We discuss how to convert an ABM into a Deep Neural Network. Finally, by establishing the equivalence between an ABM and the Deep Neural Network, we prove that the Deep Neural Network is complete.
基金Project supported by the National Science and Technology Suppor Plan(No.2013BAH21B02-01)the Beijing Natural Science Foundation(No.4153058)
文摘The collaborative filtering(CF) technique has been widely used recently in recommendation systems. It needs historical data to give predictions. However, the data sparsity problem still exists. We propose a new item-based restricted Boltzmann machine(RBM) approach for CF and use the deep multilayer RBM network structure, which alleviates the data sparsity problem and has excellent ability to extract features. Each item is treated as a single RBM, and different items share the same weights and biases. The parameters are learned layer by layer in the deep network. The batch gradient descent algorithm with minibatch is used to increase the convergence speed. The new feature vector discovered by the multilayer RBM network structure is very effective in predicting a rating and achieves a better result. Experimental results on the data set of MovieL ens show that the item-based multilayer RBM approach achieves the best performance, with a mean absolute error of 0.6424 and a root-mean-square error of 0.7843.
基金This paper was supported by the National Natural Science Foundation of China (Grant Nos. 61175037, 61228304), Special Innovation Project on Speech of Anhui Province (11010202192), Project from Anhui Science and Technology Agency (1106c0805008) and the Fundamental Research Funds for the Central Universities. We also acknowledge partial support from the US National Science Foundation (1205664).
文摘Facial expression and emotion recognition from thermal infrared images has attracted more and more attentions in recent years. However, the features adopted in current work are either temperature statistical parameters extracted from the facial regions of interest or several hand-crafted features that are commonly used in visible spectrum. Till now there are no image features specially designed for thermal infrared images. In this paper, we propose using the deep Boltzmann machine to learn thermal features for emotion recognition from thermal infrared facial images. First, the face is located and normalized from the thermal infrared im- ages. Then, a deep Boltzmann machine model composed of two layers is trained. The parameters of the deep Boltzmann machine model are further fine-tuned for emotion recognition after pre-tralning of feature learning. Comparative experimental results on the NVIE database demonstrate that our approach outperforms other approaches using temperature statistic features or hand-crafted features borrowed from visible domain. The learned features from the forehead, eye, and mouth are more effective for discriminating valence dimension of emotion than other facial areas. In addition, our study shows that adding unlabeled data from other database during training can also improve feature learning performance.