期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Performance analysis of deep borehole heat exchangers for decarbonization of heating systems
1
作者 Andreas E.D.Lund 《Deep Underground Science and Engineering》 2024年第3期349-357,共9页
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her... Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads. 展开更多
关键词 clean energy deep borehole exchangers energy transition geothermal heat ground-coupled heat pump
下载PDF
Performance Characteristics of Geothermal Single Well for Building Heating
2
作者 Jingying Li Tiejun Zhu +3 位作者 Fengming Li Dong Wang Xianbiao Bu Lingbao Wang 《Energy Engineering》 EI 2021年第3期517-534,共18页
The single well geothermal heating(SWGH)technology has attracted extensive attention.To enhance heat extraction from SWGH,a mathematical model describing heat transfer is set up,and the key influence factor and heat t... The single well geothermal heating(SWGH)technology has attracted extensive attention.To enhance heat extraction from SWGH,a mathematical model describing heat transfer is set up,and the key influence factor and heat transfer enhancement method are discussed by thermal resistance analysis.The numerical results show that the thermal resistance of rock is far greater than that of well wall and fluid.So,reducing rock thermal resistance is the most effective method for enhancing the heat extraction power.For geothermal well planning to drill:rock thermal resistance can be reduced by increasing well diameter and rock thermal conductivity;the temperature difference between liquid and rock can be raised by increasing well depth.For already existing geothermal well:an insulator with thermal conductivity of 0.2 W/(mK)is sufficient to preserve fluid enthalpy;a decrease in injection water temperature causes the increase of heat extraction power from geothermal well and heat output from heat pump simultaneously;increasing injection velocity causes the increase of pump power consumption and heat extraction power from geothermal well as well as net heat output between them.The entrepreneurs may refer to the above data in actual project.Furthermore,filling composite materials with high thermal conductivity into leakage formation is proposed in order to reduce the thermal resistance of rocks. 展开更多
关键词 Geothermal heating heat transfer enhancement single well experiment validation deep borehole heat exchanger thermal resistance
下载PDF
Advances in ground heat exchangers for space heating and cooling:Review and perspectives 被引量:1
3
作者 Ping Cui Weibo Yang +3 位作者 Wenke Zhang Ke Zhu Jeffrey D.Spitler Mingzhi Yu 《Energy and Built Environment》 2024年第2期255-269,共15页
As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency o... As a renewable energy source,geothermal energy has been widely used to provide space heating and cooling for buildings.The thermal performance of ground heat exchanger(GHE)is significant for the operating efficiency of the ground source heat pump(GSHP)systems.This paper presents a comprehensive review of developments and advances of three kinds of GHE,including vertical borehole GHE(VBGHE),Pile GHE(PGHE),and deep borehole GHE(DBGHE)which are currently popular in larger GSHP systems.Firstly,analytical models proposed to ana-lyze heat transfer process of VBGHE with different geological conditions are summarized,such as homogenous or heterogeneous ground,with or without groundwater advection.Numerical and short-time step models and measures to improve GHE thermal performance are also reviewed.Secondly,a summary of research advances in PGHE is provided,which includes the heat transfer models of PGHE,the effects of geometric structure,oper-ation modes,pile spacing,use of phase change material(PCM),thermal properties of PCM,thermo-mechanical behavior and/or thermal performance of PGHE.The effects of groundwater flow direction and velocity on PGHE are also summarized in brief.Lastly,models of three kinds of DBGHEs,i.e.,deep coaxial GHE(DCGHE),deep U-bend GHE(DUGHE)and super-long gravity heat pipe(SLGHP),are reviewed.The physical bases of the dif-ferent analytical models are elaborated and also their advantages and disadvantages are described.Advances in numerical modelling and improving numerical model calculation speed of DCBHE,DCBHE array,and DUBHE are summarized.The review provides a meaningful reference for the further study of GHEs. 展开更多
关键词 Vertical borehole ground heat exchanger Pile ground heat exchanger deep borehole ground heat exchanger Modelling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部