Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep lear...Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep learning approaches for capturing user and product information from a short text.However,such previously used approaches do not fairly and efficiently incorporate users’preferences and product characteristics.The proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations.To overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or not.The proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed problems.Experimental results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services.展开更多
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and...Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.展开更多
文摘Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep learning approaches for capturing user and product information from a short text.However,such previously used approaches do not fairly and efficiently incorporate users’preferences and product characteristics.The proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations.To overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or not.The proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed problems.Experimental results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services.
基金supported by the Natural Science Foundation of Zhejiang Province(Nos.LQ21F020021 and LZ21F020008)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)the Research Start-up Project funded by Hangzhou Normal University(No.2020QD2035).
文摘Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.