期刊文献+
共找到113,807篇文章
< 1 2 250 >
每页显示 20 50 100
Reinforcement Learning with an Ensemble of Binary Action Deep Q-Networks
1
作者 A.M.Hafiz M.Hassaballah +2 位作者 Abdullah Alqahtani Shtwai Alsubai Mohamed Abdel Hameed 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2651-2666,共16页
With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in ... With the advent of Reinforcement Learning(RL)and its continuous progress,state-of-the-art RL systems have come up for many challenging and real-world tasks.Given the scope of this area,various techniques are found in the literature.One such notable technique,Multiple Deep Q-Network(DQN)based RL systems use multiple DQN-based-entities,which learn together and communicate with each other.The learning has to be distributed wisely among all entities in such a scheme and the inter-entity communication protocol has to be carefully designed.As more complex DQNs come to the fore,the overall complexity of these multi-entity systems has increased many folds leading to issues like difficulty in training,need for high resources,more training time,and difficulty in fine-tuning leading to performance issues.Taking a cue from the parallel processing found in the nature and its efficacy,we propose a lightweight ensemble based approach for solving the core RL tasks.It uses multiple binary action DQNs having shared state and reward.The benefits of the proposed approach are overall simplicity,faster convergence and better performance compared to conventional DQN based approaches.The approach can potentially be extended to any type of DQN by forming its ensemble.Conducting extensive experimentation,promising results are obtained using the proposed ensemble approach on OpenAI Gym tasks,and Atari 2600 games as compared to recent techniques.The proposed approach gives a stateof-the-art score of 500 on the Cartpole-v1 task,259.2 on the LunarLander-v2 task,and state-of-the-art results on four out of five Atari 2600 games. 展开更多
关键词 deep q-networks ensemble learning reinforcement learning OpenAI Gym environments
下载PDF
UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network
2
作者 LI Yuting DING Yi +3 位作者 GAO Jiangchuan LIU Yusha HU Jie YANG Kun 《ZTE Communications》 2023年第2期80-87,共8页
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ... In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design. 展开更多
关键词 unmanned aerial vehicle wireless power transfer deep q-network autonomous navigation
下载PDF
MAQMC:Multi-Agent Deep Q-Network for Multi-Zone Residential HVAC Control
3
作者 Zhengkai Ding Qiming Fu +4 位作者 Jianping Chen You Lu Hongjie Wu Nengwei Fang Bin Xing 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2759-2785,共27页
The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep r... The optimization of multi-zone residential heating,ventilation,and air conditioning(HVAC)control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads.Deep reinforcement learning(DRL)methods have recently been proposed to address the HVAC control problem.However,the application of single-agent DRL formulti-zone residential HVAC controlmay lead to non-convergence or slow convergence.In this paper,we propose MAQMC(Multi-Agent deep Q-network for multi-zone residential HVAC Control)to address this challenge with the goal of minimizing energy consumption while maintaining occupants’thermal comfort.MAQMC is divided into MAQMC2(MAQMC with two agents:one agent controls the temperature of each zone,and the other agent controls the humidity of each zone)and MAQMC3(MAQMC with three agents:three agents control the temperature and humidity of three zones,respectively).The experimental results showthatMAQMC3 can reduce energy consumption by 6.27%andMAQMC2 by 3.73%compared with the fixed point;compared with the rule-based,MAQMC3 andMAQMC2 respectively can reduce 61.89%and 59.07%comfort violation.In addition,experiments with different regional weather data demonstrate that the well-trained MAQMC RL agents have the robustness and adaptability to unknown environments. 展开更多
关键词 deep reinforcement learning multi-zone residential HVAC MULTI-AGENT energy conservation COMFORT
下载PDF
Double Deep Q-Network Decoder Based on EEG Brain-Computer Interface
4
作者 REN Min XU Renyu ZHU Ting 《ZTE Communications》 2023年第3期3-10,共8页
Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through elec... Brain-computer interfaces(BCI)use neural activity as a control signal to enable direct communication between the human brain and external devices.The electrical signals generated by the brain are captured through electroencephalogram(EEG)and translated into neural intentions reflecting the user’s behavior.Correct decoding of the neural intentions then facilitates the control of external devices.Reinforcement learning-based BCIs enhance decoders to complete tasks based only on feedback signals(rewards)from the environment,building a general framework for dynamic mapping from neural intentions to actions that adapt to changing environments.However,using traditional reinforcement learning methods can have challenges such as the curse of dimensionality and poor generalization.Therefore,in this paper,we use deep reinforcement learning to construct decoders for the correct decoding of EEG signals,demonstrate its feasibility through experiments,and demonstrate its stronger generalization on motion imaging(MI)EEG data signals with high dynamic characteristics. 展开更多
关键词 brain-computer interface(BCI) electroencephalogram(EEG) deep reinforcement learning(deep RL) motion imaging(MI)generalizability
下载PDF
Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications in Software-Defined IoT
5
作者 Prohim Tam Sa Math +1 位作者 Ahyoung Lee Seokhoon Kim 《Computers, Materials & Continua》 SCIE EI 2022年第5期3319-3335,共17页
Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging ... Federated learning(FL)activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes.However,in large-scale heterogeneous Internet of Things(IoT)cellular networks,massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly.This paper introduces the system model of converging softwaredefined networking(SDN)and network functions virtualization(NFV)to enable device/resource abstractions and provide NFV-enabled edge FL(eFL)aggregation servers for advancing automation and controllability.Multi-agent deep Q-networks(MADQNs)target to enforce a self-learning softwarization,optimize resource allocation policies,and advocate computation offloading decisions.With gathered network conditions and resource states,the proposed agent aims to explore various actions for estimating expected longterm rewards in a particular state observation.In exploration phase,optimal actions for joint resource allocation and offloading decisions in different possible states are obtained by maximum Q-value selections.Action-based virtual network functions(VNF)forwarding graph(VNFFG)is orchestrated to map VNFs towards eFL aggregation server with sufficient communication and computation resources in NFV infrastructure(NFVI).The proposed scheme indicates deficient allocation actions,modifies the VNF backup instances,and reallocates the virtual resource for exploitation phase.Deep neural network(DNN)is used as a value function approximator,and epsilongreedy algorithm balances exploration and exploitation.The scheme primarily considers the criticalities of FL model services and congestion states to optimize long-term policy.Simulation results presented the outperformance of the proposed scheme over reference schemes in terms of Quality of Service(QoS)performance metrics,including packet drop ratio,packet drop counts,packet delivery ratio,delay,and throughput. 展开更多
关键词 deep q-networks federated learning network functions virtualization quality of service software-defined networking
下载PDF
Convolutional Neural Network-Based Deep Q-Network (CNN-DQN) Resource Management in Cloud Radio Access Network
6
作者 Amjad Iqbal Mau-Luen Tham Yoong Choon Chang 《China Communications》 SCIE CSCD 2022年第10期129-142,共14页
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi... The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach. 展开更多
关键词 energy efficiency(EE) markov decision process(MDP) convolutional neural network(CNN) cloud RAN deep q-network(DQN)
下载PDF
Walking Stability Control Method for Biped Robot on Uneven Ground Based on Deep Q-Network
7
作者 Baoling Han Yuting Zhao Qingsheng Luo 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期598-605,共8页
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ... A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved. 展开更多
关键词 deep q-network (DQN) BIPED robot uneven ground WALKING STABILITY gait control
下载PDF
Transformer-Aided Deep Double Dueling Spatial-Temporal Q-Network for Spatial Crowdsourcing Analysis
8
作者 Yu Li Mingxiao Li +2 位作者 Dongyang Ou Junjie Guo Fangyuan Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期893-909,共17页
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ... With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models. 展开更多
关键词 Historical behavior analysis spatial crowdsourcing deep double dueling q-networks
下载PDF
Intelligent Voltage Control Method in Active Distribution Networks Based on Averaged Weighted Double Deep Q-network Algorithm
9
作者 Yangyang Wang Meiqin Mao +1 位作者 Liuchen Chang Nikos D.Hatziargyriou 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第1期132-143,共12页
High penetration of distributed renewable energy sources and electric vehicles(EVs)makes future active distribution network(ADN)highly variable.These characteristics put great challenges to traditional voltage control... High penetration of distributed renewable energy sources and electric vehicles(EVs)makes future active distribution network(ADN)highly variable.These characteristics put great challenges to traditional voltage control methods.Voltage control based on the deep Q-network(DQN)algorithm offers a potential solution to this problem because it possesses humanlevel control performance.However,the traditional DQN methods may produce overestimation of action reward values,resulting in degradation of obtained solutions.In this paper,an intelligent voltage control method based on averaged weighted double deep Q-network(AWDDQN)algorithm is proposed to overcome the shortcomings of overestimation of action reward values in DQN algorithm and underestimation of action reward values in double deep Q-network(DDQN)algorithm.Using the proposed method,the voltage control objective is incorporated into the designed action reward values and normalized to form a Markov decision process(MDP)model which is solved by the AWDDQN algorithm.The designed AWDDQN-based intelligent voltage control agent is trained offline and used as online intelligent dynamic voltage regulator for the ADN.The proposed voltage control method is validated using the IEEE 33-bus and 123-bus systems containing renewable energy sources and EVs,and compared with the DQN and DDQN algorithms based methods,and traditional mixed-integer nonlinear program based methods.The simulation results show that the proposed method has better convergence and less voltage volatility than the other ones. 展开更多
关键词 Averaged weighted double deep q-network(AWDDQN) deep Q learning active distribution network(ADN) voltage control electrical vehicle(EV)
原文传递
Associative Tasks Computing Offloading Scheme in Internet of Medical Things with Deep Reinforcement Learning
10
作者 Jiang Fan Qin Junwei +1 位作者 Liu Lei Tian Hui 《China Communications》 SCIE CSCD 2024年第4期38-52,共15页
The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel... The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance. 展开更多
关键词 associative tasks cache-aided procedure double deep q-network Internet of Medical Things(IoMT) multi-access edge computing(MEC)
下载PDF
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建
11
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep Forest算法 PYTHON语言
下载PDF
基于DeepLabv3+的船体结构腐蚀检测方法
12
作者 向林浩 方昊昱 +2 位作者 周健 张瑜 李位星 《船海工程》 北大核心 2024年第2期30-34,共5页
利用图像识别方法对无人机、机器人所采集的实时图像开展船体结构腐蚀检测,可有效提高检验检测效率和数字化、智能化水平,具有极大的应用价值和潜力,将改变传统的船体结构检验检测方式。提出一种基于DeepLabv3+的船体结构腐蚀检测模型,... 利用图像识别方法对无人机、机器人所采集的实时图像开展船体结构腐蚀检测,可有效提高检验检测效率和数字化、智能化水平,具有极大的应用价值和潜力,将改变传统的船体结构检验检测方式。提出一种基于DeepLabv3+的船体结构腐蚀检测模型,通过收集图像样本并进行三种腐蚀类别的分割标注,基于DeepLabv3+语义分割模型进行网络的训练,预测图片中腐蚀的像素点类别和区域,模型在测试集的精准率达到52.92%,证明了使用DeepLabv3+检测船体腐蚀缺陷的可行性。 展开更多
关键词 船体结构 腐蚀检测 深度学习 deepLabv3+
下载PDF
基于M-DeepLab网络的速度建模技术研究
13
作者 徐秀刚 张浩楠 +1 位作者 许文德 郭鹏 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期145-155,共11页
本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融... 本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融合,既获得了更多的速度特征,又保留了网络浅部的速度信息,防止出现网络退化和过拟合问题。模型测试证明,M-DeepLab网络能够实现智能、精确的速度建模,简单模型、复杂模型以及含有噪声数据复杂模型的智能速度建模,均取得了良好的效果。相较DeepLabV3+网络,本文方法对于速度模型界面处的预测,特别是速度突变区域的预测,具有更高的预测精度,从而验证了该方法精确性、高效性、实用性和抗噪性。 展开更多
关键词 深度学习 速度建模 M-deepLab网络 监督学习
下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
14
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
下载PDF
基于改进DeeplabV3+的水面多类型漂浮物分割方法研究
15
作者 包学才 刘飞燕 +2 位作者 聂菊根 许小华 柯华盛 《水利水电技术(中英文)》 北大核心 2024年第4期163-175,共13页
【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行... 【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行分类,采用自制数据集进行对比试验。算法选择xception网络作为主干网络以获得初步漂浮物特征,在加强特征提取网络部分引入注意力机制以强调有效特征信息,在后处理阶段加入全连接条件随机场模型,将单个像素点的局部信息与全局语义信息融合。【结果】对比图像分割性能指标,改进后的算法mPA(Mean Pixel Accuracy)提升了5.73%,mIOU(Mean Intersection Over Union)提升了4.37%。【结论】相比于其他算法模型,改进后的DeeplabV3+算法对漂浮物特征的获取能力更强,同时能获得丰富的细节信息以更精准地识别多类型水面漂浮物的边界与较难分类的漂浮物,在对多个水库场景测试后满足实际水域环境中漂浮物检测的需求。 展开更多
关键词 深度学习 语义分割 特征提取 漂浮物识别 注意力机制 全连接条件随机场 算法模型 影响因素
下载PDF
Artificial Potential Field Incorporated Deep-Q-Network Algorithm for Mobile Robot Path Prediction
16
作者 A.Sivaranjani B.Vinod 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1135-1150,共16页
Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a st... Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%. 展开更多
关键词 Artificial potentialfield deep reinforcement learning mobile robot turtle bot deep Q network path prediction
下载PDF
基于场因子分解的xDeepFM推荐模型
17
作者 李子杰 张姝 +2 位作者 欧阳昭相 王俊 吴迪 《应用科学学报》 CAS CSCD 北大核心 2024年第3期513-524,共12页
极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推... 极深因子分解机(eXtreme deep factorization machine,xDeepFM)是一种基于上下文感知的推荐模型,它提出了一种压缩交叉网络对特征进行阶数可控的特征交叉,并将该网络与深度神经网络进行结合以优化推荐效果。为了进一步提升xDeepFM在推荐场景下的表现,提出一种基于场因子分解的xDeepFM改进模型。该模型通过场信息增强了特征的表达能力,并建立了多个交叉压缩网络以学习高阶组合特征。最后分析了用户场、项目场设定的合理性,并在3个不同规模的MovieLens系列数据集上通过受试者工作特征曲线下面积、对数似然损失指标进行性能评估,验证了该改进模型的有效性。 展开更多
关键词 推荐算法 极深因子分解机 场因子分解 深度学习
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
18
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Hyperspectral image super resolution using deep internal and self-supervised learning
19
作者 Zhe Liu Xian-Hua Han 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期128-141,共14页
By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral... By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods. 展开更多
关键词 computer vision deep learning deep neural networks HYPERSPECTRAL image enhancement
下载PDF
Dendritic Deep Learning for Medical Segmentation
20
作者 Zhipeng Liu Zhiming Zhang +3 位作者 Zhenyu Lei Masaaki Omura Rong-Long Wang Shangce Gao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期803-805,共3页
Dear Editor,This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation.In this study,we enhance the segmentation accuracy based on a Se... Dear Editor,This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation.In this study,we enhance the segmentation accuracy based on a SegNet variant including an encoder-decoder structure,an upsampling index,and a deep supervision method.Furthermore,we introduce a dendritic neuron-based convolutional block to enable nonlinear feature mapping,thereby further improving the effectiveness of our approach. 展开更多
关键词 thereby deep enable
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部