期刊文献+
共找到456篇文章
< 1 2 23 >
每页显示 20 50 100
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:7
1
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
下载PDF
Multimode Process Monitoring Based on the Density-Based Support Vector Data Description
2
作者 郭红杰 王帆 +2 位作者 宋冰 侍洪波 谭帅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第3期342-348,共7页
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the... Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process. 展开更多
关键词 Eastman Tennessee sparse utilized illustrated kernel Bayesian charts validity false
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
3
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
基于MKMCC-DSVDD的航空发动机异常检测方法
4
作者 曲建岭 陈永展 +1 位作者 王小飞 王元鑫 《科学技术与工程》 北大核心 2024年第21期9218-9226,共9页
为解决传统航空发动机异常检测方法准确率和泛化性能较低的问题,提出一种混合核最大相关熵的深度支持向量数据描述(mixed kernel maximum correntropy criterion-deep support vector data description,MKMCC-DSVDD)方法。首先,采用合... 为解决传统航空发动机异常检测方法准确率和泛化性能较低的问题,提出一种混合核最大相关熵的深度支持向量数据描述(mixed kernel maximum correntropy criterion-deep support vector data description,MKMCC-DSVDD)方法。首先,采用合成少数类过采样技术扩充异常样本规模,提高对非均衡样本的泛化性能;其次,建立基于混合核改进的最大相关熵损失函数,可以在无须数据分布假设的前提下提升准确率;最后,构建基于MKMCC-DSVDD的航空发动机异常检测方法。在航空发动机气路系统和滑油系统异常检测实验中,所提方法平均曲线下的面积(area under curve,AUC)达到98.53%,表明其具有较高的实用性和泛化性能。 展开更多
关键词 航空发动机 样本非均衡 异常检测 状态监控 深度支持向量数据描述
下载PDF
基于Deep SVDD的通信信号异常检测方法 被引量:15
5
作者 康颖 赵治华 +2 位作者 吴灏 李亚星 孟进 《系统工程与电子技术》 EI CSCD 北大核心 2022年第7期2319-2328,共10页
针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基... 针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。 展开更多
关键词 异常检测 deep SVDD 调制识别 干扰预警
下载PDF
基于DLNS-DSVDD的故障检测方法 被引量:1
6
作者 谢彦红 张浩然 +1 位作者 张成 李元 《河北工业科技》 CAS 2022年第4期300-309,共10页
为了解决支持向量数据描述方法对多模态动态过程故障检测率低的问题,提出了基于双局部近邻标准化的动态支持向量数据描述的故障检测方法。首先,应用DLNS方法标准化样本生成标准数据集;其次,利用动态方法将标准数据集构造成动态矩阵;最后... 为了解决支持向量数据描述方法对多模态动态过程故障检测率低的问题,提出了基于双局部近邻标准化的动态支持向量数据描述的故障检测方法。首先,应用DLNS方法标准化样本生成标准数据集;其次,利用动态方法将标准数据集构造成动态矩阵;最后,使用SVDD方法建立基于空间距离的统计量进行故障检测,应用DLNS-DSVDD方法对一个数值例子和田纳西-伊斯曼过程(TE过程)进行仿真测试,并与传统方法对比分析。结果表明,DLNS-DSVDD方法在具有更低的误报率的前提下拥有更高的故障检测率,平均误报率为2.2%,相比于SVDD方法降低了2.1%,平均故障检测率为88.2%,相比于SVDD方法提高了38.5%,证明了所提出的方法可以有效地监控具有多模态动态特征的化工生产过程。DLNS-DSVDD方法可以有效地剔除数据的多模态结构并且准确地捕获样本中的动态信息,为提高SVDD方法在多模态动态过程中的故障检测性能提供了参考。 展开更多
关键词 自动控制技术其他学科 故障检测 支持向量数据描述 双局部近邻标准化 动态矩阵 动态特征 多模态特征
下载PDF
Deep Learning Based Intrusion Detection in Cloud Services for Resilience Management 被引量:1
7
作者 S.Sreenivasa Chakravarthi R.Jagadeesh Kannan +1 位作者 V.Anantha Natarajan Xiao-Zhi Gao 《Computers, Materials & Continua》 SCIE EI 2022年第6期5117-5133,共17页
In the global scenario one of the important goals for sustainable development in industrial field is innovate new technology,and invest in building infrastructure.All the developed and developing countries focus on bu... In the global scenario one of the important goals for sustainable development in industrial field is innovate new technology,and invest in building infrastructure.All the developed and developing countries focus on building resilient infrastructure and promote sustainable developments by fostering innovation.At this juncture the cloud computing has become an important information and communication technologies model influencing sustainable development of the industries in the developing countries.As part of the innovations happening in the industrial sector,a new concept termed as‘smart manufacturing’has emerged,which employs the benefits of emerging technologies like internet of things and cloud computing.Cloud services deliver an on-demand access to computing,storage,and infrastructural platforms for the industrial users through Internet.In the recent era of information technology the number of business and individual users of cloud services have been increased and larger volumes of data is being processed and stored in it.As a consequence,the data breaches in the cloud services are also increasing day by day.Due to various security vulnerabilities in the cloud architecture;as a result the cloud environment has become non-resilient.To restore the normal behavior of the cloud,detect the deviations,and achieve higher resilience,anomaly detection becomes essential.The deep learning architectures-based anomaly detection mechanisms uses various monitoring metrics characterize the normal behavior of cloud services and identify the abnormal events.This paper focuses on designing an intelligent deep learning based approach for detecting cloud anomalies in real time to make it more resilient.The deep learning models are trained using features extracted from the system level and network level performance metrics observed in the Transfer Control Protocol(TCP)traces of the simulation.The experimental results of the proposed approach demonstrate a superior performance in terms of higher detection rate and lower false alarm rate when compared to the Support Vector Machine(SVM). 展开更多
关键词 Anomaly detection network flow data deep learning MIGRATION auto-encoder support vector machine
下载PDF
Mammogram Learning System for Breast Cancer Diagnosis Using Deep Learning SVM
8
作者 G.Jayandhi J.S.Leena Jasmine S.Mary Joans 《Computer Systems Science & Engineering》 SCIE EI 2022年第2期491-503,共13页
The most common form of cancer for women is breast cancer.Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer.Thus,an automated computerized system with hig... The most common form of cancer for women is breast cancer.Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer.Thus,an automated computerized system with high accuracy is needed.In this study,an efficient Deep Learning Architecture(DLA)with a Support Vector Machine(SVM)is designed for breast cancer diagnosis.It combines the ideas from DLA with SVM.The state-of-the-art Visual Geometric Group(VGG)architecture with 16 layers is employed in this study as it uses the small size of 3×3 convolution filters that reduces system complexity.The softmax layer in VGG assumes that the training samples belong to exactly only one class,which is not valid in a real situation,such as in medical image diagnosis.To overcome this situation,SVM is employed instead of the softmax layer in VGG.Data augmentation is also employed as DLA usually requires a large number of samples.VGG model with different SVM kernels is built to classify the mammograms.Results show that the VGG-SVM model has good potential for the classification of Mammographic Image Analysis Society(MIAS)database images with an accuracy of 98.67%,sensitivity of 99.32%,and specificity of 98.34%. 展开更多
关键词 deep learning architecture support vector machine breast cancer visual geometric group data augmentation
下载PDF
基于深度自回归模型的电网异常流量检测算法 被引量:1
9
作者 李勇 韩俊飞 +2 位作者 李秀芬 王鹏 王蓓 《沈阳工业大学学报》 CAS 北大核心 2024年第1期24-28,共5页
针对电网中行为种类复杂多样且数量众多的问题,提出了一种基于自回归模型的电网异常流量检测算法。该算法利用深度自编码网络自动提取网络流量数据的特征,降低异常流量检测的分析周期,并自动挖掘数据的层次关系。通过支持向量机对提取... 针对电网中行为种类复杂多样且数量众多的问题,提出了一种基于自回归模型的电网异常流量检测算法。该算法利用深度自编码网络自动提取网络流量数据的特征,降低异常流量检测的分析周期,并自动挖掘数据的层次关系。通过支持向量机对提取的特征进行分类,实现对异常流量的检测。仿真实验结果表明,所提算法可以分析不同攻击向量,避免噪声数据的干扰,进而提高电网异常流量检测的精度,对于流量数据处理具有重要意义。 展开更多
关键词 自回归模型 深度学习 异常检测 海量数据 分析周期 支持向量机
下载PDF
考虑环境参数的农业生产数据深度挖掘仿真
10
作者 车银超 惠向晖 +1 位作者 李勇 李杨 《计算机仿真》 2024年第10期502-506,共5页
农业生产数据受到多种因素的影响,如气候、土壤、病虫害等,这些因素会导致数据存在较大的误差和不确定性,从而影响数据挖掘的准确性。为了能够获取精准的农业生产数据深度挖掘结果,提出一种环境参数影响下农业生产数据深度挖掘算法。分... 农业生产数据受到多种因素的影响,如气候、土壤、病虫害等,这些因素会导致数据存在较大的误差和不确定性,从而影响数据挖掘的准确性。为了能够获取精准的农业生产数据深度挖掘结果,提出一种环境参数影响下农业生产数据深度挖掘算法。分析环境参数对农业生产数据和农业生产数据深度挖掘的影响。采用支持向量机聚类和数据域描述方法,对全部农业生产数据展开样本数据归类处理。根据原始空间农业生产数据属性值的极值,确定样本的属性范围。利用获取的支持向量提取规则,完成农业生产数据深度挖掘。实验结果表明,所提算法的农业生产数据拟合度大于0.75,且挖掘准确性保持在0.9以上,表明上述算法可以获取高精度和高效率的农业生产数据深度挖掘结果。 展开更多
关键词 环境参数影响 农业生产数据 深度挖掘 支持向量机 数据属性值
下载PDF
面向电力设备异常检测的深度自编码支持向量数据描述模型研究
11
作者 耿波 潘曙辉 董晓旭 《湖南电力》 2024年第1期119-127,共9页
针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表... 针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表示。此外,将编码器部分改造为混合专家模型结构,将数据分配给不同专家子模块进行专业化的学习,使异常决策边界更清晰。在4个公开数据集和3个电厂设备数据集上的实验结果证实了自监督学习和混合专家模型的有效性。 展开更多
关键词 异常检测 深度自编码支持向量数据描述 自监督学习 混合专家模型
下载PDF
基于混合高斯先验变分自编码器的深度多球支持向量数据描述
12
作者 武慧囡 邢红杰 李刚 《计算机科学》 CSCD 北大核心 2024年第6期135-143,共9页
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ... 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。 展开更多
关键词 深度支持向量数据描述 混合高斯先验 变分自编码器 异常检测 超球崩溃
下载PDF
基于DBSVDD-RVR的多模态间歇过程质量变量在线软测量
13
作者 李季 王建林 +3 位作者 何睿 周新杰 王雯 赵利强 《化工学报》 EI CSCD 北大核心 2024年第9期3231-3241,共11页
现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector d... 现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector data description-relevance vector regression,DBSVDD-RVR)的间歇过程质量变量在线软测量方法。依据间歇过程离线模态划分获得的各稳定及过渡模态历史数据,建立DBSVDD在线模态识别模型,并引入滑动窗,构建间歇过程在线模态识别策略,利用DBSVDD模型实现在线测量数据的模态识别;在此基础上,构建了基于超球体距离的数据相似度计算方法,选择过渡模态在线数据的相似建模数据集,建立过渡模态的即时学习RVR软测量模型,并依据历史数据建立各稳定模态的RVR软测量模型,实现间歇过程质量变量的在线软测量。青霉素发酵过程的实验结果表明,所提方法有效地提高了间歇过程模态识别的合理性和质量变量在线软测量的准确性。 展开更多
关键词 间歇式 双边界支持向量数据描述 在线模态识别 模型 预测
下载PDF
基于多核学习的单分类多示例学习算法
14
作者 古慧敏 肖燕珊 刘波 《广东工业大学学报》 CAS 2024年第2期101-107,共7页
将多核学习引入到单分类多示例学习中,提出了一种基于多核学习的单分类多示例支持向量数据描述算法,解决了多核学习方法在实际应用中多示例数据具有比较复杂分布结构的学习问题。本文算法是将多个示例数据通过多个不同的核函数多核映射... 将多核学习引入到单分类多示例学习中,提出了一种基于多核学习的单分类多示例支持向量数据描述算法,解决了多核学习方法在实际应用中多示例数据具有比较复杂分布结构的学习问题。本文算法是将多个示例数据通过多个不同的核函数多核映射到特征空间,在特征空间中通过支持向量数据描述算法构建球形分类器。该算法采用迭代优化框架,首先,根据初始化包中的正示例来优化目标函数以此建立分类器。然后,根据上一步得到的分类器再对包中的正示例的标签进行更新。最后,在Corel、VOC 2007和Messidor数据集上的实验结果表明,所提出的算法比单核多示例方法具有更好的性能,进一步验证了算法的可行性和有效性。 展开更多
关键词 多核学习 单分类 支持向量数据描述 多示例学习
下载PDF
轨道交通户外站台门与列车间隙背景灯带图像分割算法研究
15
作者 郑仲星 刘伟铭 《铁道标准设计》 北大核心 2024年第4期178-185,共8页
轨道交通在发车前需要清空站台与列车间隙,否则异物入侵会对乘客与列车运行造成安全隐患,基于背景灯带的异物入侵检测需要对灯带在图像中进行图像分割、提取、识别。针对在户外站台场景下,复杂背景和日光等因素为背景灯带提取带来困难... 轨道交通在发车前需要清空站台与列车间隙,否则异物入侵会对乘客与列车运行造成安全隐患,基于背景灯带的异物入侵检测需要对灯带在图像中进行图像分割、提取、识别。针对在户外站台场景下,复杂背景和日光等因素为背景灯带提取带来困难的问题,提出一种无监督的图像分割算法。首先通过卷积神经网络进行特征提取,然后将特征图输入到后续分类器中对所有像素进行类别输出。在训练过程中,使用的损失函数从三方面进行设计:考虑特征相似度和空间连续约束、基于深度支持向量描述以及基于几何与光度增强。算法能够实现单样本无监督对神经网络参数进行调优。通过对某城轨站台真实数据采集及实验结果表明,本文提出的方法在与训练样本不同光照条件、拍摄角度条件下,对背景灯带进行分割的F1分数为78.47%;在性能优于其他方法的同时,耗时最多能减少97.1%;算法为基于背景灯带的异物检测方案提供一种行之有效的图像分割方法,为后续的异物自动检测提供基础。 展开更多
关键词 轨道交通 站台间隙 异物入侵检测 卷积神经网络 深度支持向量数据描述 无监督图像分割 灯带检测
下载PDF
基于图滤波器和SVDD算法的分布式光伏集群发电异常检测研究 被引量:1
16
作者 韩庭苇 夏国芳 《电力信息与通信技术》 2024年第3期52-57,共6页
由于电网企业不断加快数字化转型,利用北斗定位技术将自动获取区域内光伏计量装置经纬度这一关键技术参数。文章充分利用分布式光伏集群内光伏发电装机位置空间相关性,提出一种在弱监督下基于图滤波与支持向量数据描述(support vector d... 由于电网企业不断加快数字化转型,利用北斗定位技术将自动获取区域内光伏计量装置经纬度这一关键技术参数。文章充分利用分布式光伏集群内光伏发电装机位置空间相关性,提出一种在弱监督下基于图滤波与支持向量数据描述(support vector data description,SVDD)的分布式光伏集群发电异常检测方法。首先建立分布式光伏集群发电图数据结构模型,通过加权邻接矩阵描述分布式光伏发电点空间耦合性,其次构造图高通滤波器将时域参数转化为频域参数,然后通过SVDD算法优化图滤波结果,进一步挖掘图高通滤波器阈值与输出功率数据之间的关系。结果表明,采用图滤波器和SVDD算法模型方法在分布式光伏发电异常检测精度上有显著提高。 展开更多
关键词 分布式光伏集群 发电异常检测 图高通滤波器 支持向量数据描述
下载PDF
基于可缩放hinge损失的支持向量数据描述
17
作者 王余波 胡文军 王士同 《湖州师范学院学报》 2024年第8期36-46,共11页
支持向量数据描述(SVDD)极易受到异常值的影响,导致其鲁棒性不佳.利用可缩放的hinge损失函数,提出一种新的支持向量数据描述方法(RH-SVDD).将有界可缩放的hinge损失作为松弛变量构建超球模型;通过共轭函数理论将超球模型转化为凸优化问... 支持向量数据描述(SVDD)极易受到异常值的影响,导致其鲁棒性不佳.利用可缩放的hinge损失函数,提出一种新的支持向量数据描述方法(RH-SVDD).将有界可缩放的hinge损失作为松弛变量构建超球模型;通过共轭函数理论将超球模型转化为凸优化问题;利用半二次优化技术迭代求解凸优化问题,并在迭代过程中实现权重更新,从而削弱异常值的影响,提升鲁棒性.实验结果表明,提出的RH-SVDD在分类任务中具有更好的性能优势. 展开更多
关键词 支持向量数据描述 可缩放hinge损失 半二次优化 鲁棒性
下载PDF
A Dual-Task Learning Approach for Bearing Anomaly Detection and State Evaluation of Safe Region
18
作者 Yuhua Yin Zhiliang Liu +1 位作者 Bin Guo Mingjian Zuo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期229-241,共13页
Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o... Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions. 展开更多
关键词 Bearing condition monitoring Anomaly detection Safe region support vector data description
下载PDF
基于SVDD和改进K-Means的变压器故障诊断模型
19
作者 谢旭钦 刘泉辉 +3 位作者 赵湘文 张清松 林剑雄 张帆 《计算技术与自动化》 2024年第2期30-34,共5页
变压器状态对于智能配电房的安全稳定运行具有重要意义。为实现对变压器故障的准确诊断,在变压器油中溶解气体分析(DGA)的基础上,提出了一种联合使用支持向量数据描述(SVDD)和改进K-Means聚类的变压器故障诊断方法。首先利用SVDD构造闭... 变压器状态对于智能配电房的安全稳定运行具有重要意义。为实现对变压器故障的准确诊断,在变压器油中溶解气体分析(DGA)的基础上,提出了一种联合使用支持向量数据描述(SVDD)和改进K-Means聚类的变压器故障诊断方法。首先利用SVDD构造闭合分类曲面实现“正常”和“故障”两类判断,然后对“故障”类样本进行K-Means聚类分析,自动将其划分为低能放电、中低温过热、高能放电、高温过热和局部放电5种故障类型,同时针对K-Means初始聚类中心选取难题,提出局部密度概念自动确定K-Means初始聚类中心,提升聚类性能。最后利用变压器故障真实数据开展实验,结果表明,相较于支持向量机(SVM)和BP神经网络模型,所提方法的故障诊断准确率分别提升9.8%和8%。 展开更多
关键词 智能配电房 变压器故障诊断 油中溶解气体分析 支持向量数据描述 多分类器联合
下载PDF
基于风电机组叶片哨声异响声学检测方法
20
作者 黎涛 《青海电力》 2024年第S01期75-80,共6页
针对风电机组叶片排水孔堵塞或被雷击穿孔等问题,提出一种非接触式的声学检测方法。该方法首先对采集到的信号转化为时频图,利用中值滤波和自适应阈值的方法将时频图二值化,根据二值化时频图中哨音轮廓特点,提取轮廓信号时域和频域等9... 针对风电机组叶片排水孔堵塞或被雷击穿孔等问题,提出一种非接触式的声学检测方法。该方法首先对采集到的信号转化为时频图,利用中值滤波和自适应阈值的方法将时频图二值化,根据二值化时频图中哨音轮廓特点,提取轮廓信号时域和频域等9个参数作为特征向量,提出了动态半径的支持向量数据描述异常检测模型(dynamic radius support vector data description,DR-SVDD)。将DR-SVDD和SVDD的异常检测模型用于风机叶片哨声诊断,验证了该方法的有效性。 展开更多
关键词 风电机组 声学检测 排水孔堵塞 支持向量数据描述
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部