There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the...Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process.展开更多
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i...Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.展开更多
为解决传统航空发动机异常检测方法准确率和泛化性能较低的问题,提出一种混合核最大相关熵的深度支持向量数据描述(mixed kernel maximum correntropy criterion-deep support vector data description,MKMCC-DSVDD)方法。首先,采用合...为解决传统航空发动机异常检测方法准确率和泛化性能较低的问题,提出一种混合核最大相关熵的深度支持向量数据描述(mixed kernel maximum correntropy criterion-deep support vector data description,MKMCC-DSVDD)方法。首先,采用合成少数类过采样技术扩充异常样本规模,提高对非均衡样本的泛化性能;其次,建立基于混合核改进的最大相关熵损失函数,可以在无须数据分布假设的前提下提升准确率;最后,构建基于MKMCC-DSVDD的航空发动机异常检测方法。在航空发动机气路系统和滑油系统异常检测实验中,所提方法平均曲线下的面积(area under curve,AUC)达到98.53%,表明其具有较高的实用性和泛化性能。展开更多
针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基...针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。展开更多
In the global scenario one of the important goals for sustainable development in industrial field is innovate new technology,and invest in building infrastructure.All the developed and developing countries focus on bu...In the global scenario one of the important goals for sustainable development in industrial field is innovate new technology,and invest in building infrastructure.All the developed and developing countries focus on building resilient infrastructure and promote sustainable developments by fostering innovation.At this juncture the cloud computing has become an important information and communication technologies model influencing sustainable development of the industries in the developing countries.As part of the innovations happening in the industrial sector,a new concept termed as‘smart manufacturing’has emerged,which employs the benefits of emerging technologies like internet of things and cloud computing.Cloud services deliver an on-demand access to computing,storage,and infrastructural platforms for the industrial users through Internet.In the recent era of information technology the number of business and individual users of cloud services have been increased and larger volumes of data is being processed and stored in it.As a consequence,the data breaches in the cloud services are also increasing day by day.Due to various security vulnerabilities in the cloud architecture;as a result the cloud environment has become non-resilient.To restore the normal behavior of the cloud,detect the deviations,and achieve higher resilience,anomaly detection becomes essential.The deep learning architectures-based anomaly detection mechanisms uses various monitoring metrics characterize the normal behavior of cloud services and identify the abnormal events.This paper focuses on designing an intelligent deep learning based approach for detecting cloud anomalies in real time to make it more resilient.The deep learning models are trained using features extracted from the system level and network level performance metrics observed in the Transfer Control Protocol(TCP)traces of the simulation.The experimental results of the proposed approach demonstrate a superior performance in terms of higher detection rate and lower false alarm rate when compared to the Support Vector Machine(SVM).展开更多
The most common form of cancer for women is breast cancer.Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer.Thus,an automated computerized system with hig...The most common form of cancer for women is breast cancer.Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer.Thus,an automated computerized system with high accuracy is needed.In this study,an efficient Deep Learning Architecture(DLA)with a Support Vector Machine(SVM)is designed for breast cancer diagnosis.It combines the ideas from DLA with SVM.The state-of-the-art Visual Geometric Group(VGG)architecture with 16 layers is employed in this study as it uses the small size of 3×3 convolution filters that reduces system complexity.The softmax layer in VGG assumes that the training samples belong to exactly only one class,which is not valid in a real situation,such as in medical image diagnosis.To overcome this situation,SVM is employed instead of the softmax layer in VGG.Data augmentation is also employed as DLA usually requires a large number of samples.VGG model with different SVM kernels is built to classify the mammograms.Results show that the VGG-SVM model has good potential for the classification of Mammographic Image Analysis Society(MIAS)database images with an accuracy of 98.67%,sensitivity of 99.32%,and specificity of 98.34%.展开更多
随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector d...现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector data description-relevance vector regression,DBSVDD-RVR)的间歇过程质量变量在线软测量方法。依据间歇过程离线模态划分获得的各稳定及过渡模态历史数据,建立DBSVDD在线模态识别模型,并引入滑动窗,构建间歇过程在线模态识别策略,利用DBSVDD模型实现在线测量数据的模态识别;在此基础上,构建了基于超球体距离的数据相似度计算方法,选择过渡模态在线数据的相似建模数据集,建立过渡模态的即时学习RVR软测量模型,并依据历史数据建立各稳定模态的RVR软测量模型,实现间歇过程质量变量的在线软测量。青霉素发酵过程的实验结果表明,所提方法有效地提高了间歇过程模态识别的合理性和质量变量在线软测量的准确性。展开更多
Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o...Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.展开更多
针对风电机组叶片排水孔堵塞或被雷击穿孔等问题,提出一种非接触式的声学检测方法。该方法首先对采集到的信号转化为时频图,利用中值滤波和自适应阈值的方法将时频图二值化,根据二值化时频图中哨音轮廓特点,提取轮廓信号时域和频域等9...针对风电机组叶片排水孔堵塞或被雷击穿孔等问题,提出一种非接触式的声学检测方法。该方法首先对采集到的信号转化为时频图,利用中值滤波和自适应阈值的方法将时频图二值化,根据二值化时频图中哨音轮廓特点,提取轮廓信号时域和频域等9个参数作为特征向量,提出了动态半径的支持向量数据描述异常检测模型(dynamic radius support vector data description,DR-SVDD)。将DR-SVDD和SVDD的异常检测模型用于风机叶片哨声诊断,验证了该方法的有效性。展开更多
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金National Natural Science Foundation of China(No.61374140)the Youth Foundation of National Natural Science Foundation of China(No.61403072)
文摘Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process.
基金funded by the Natural Science Foundation of Shandong Province (ZR2021MD061ZR2023QD025)+3 种基金China Postdoctoral Science Foundation (2022M721972)National Natural Science Foundation of China (41174098)Young Talents Foundation of Inner Mongolia University (10000-23112101/055)Qingdao Postdoctoral Science Foundation (QDBSH20230102094)。
文摘Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.
文摘为解决传统航空发动机异常检测方法准确率和泛化性能较低的问题,提出一种混合核最大相关熵的深度支持向量数据描述(mixed kernel maximum correntropy criterion-deep support vector data description,MKMCC-DSVDD)方法。首先,采用合成少数类过采样技术扩充异常样本规模,提高对非均衡样本的泛化性能;其次,建立基于混合核改进的最大相关熵损失函数,可以在无须数据分布假设的前提下提升准确率;最后,构建基于MKMCC-DSVDD的航空发动机异常检测方法。在航空发动机气路系统和滑油系统异常检测实验中,所提方法平均曲线下的面积(area under curve,AUC)达到98.53%,表明其具有较高的实用性和泛化性能。
文摘针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。
文摘In the global scenario one of the important goals for sustainable development in industrial field is innovate new technology,and invest in building infrastructure.All the developed and developing countries focus on building resilient infrastructure and promote sustainable developments by fostering innovation.At this juncture the cloud computing has become an important information and communication technologies model influencing sustainable development of the industries in the developing countries.As part of the innovations happening in the industrial sector,a new concept termed as‘smart manufacturing’has emerged,which employs the benefits of emerging technologies like internet of things and cloud computing.Cloud services deliver an on-demand access to computing,storage,and infrastructural platforms for the industrial users through Internet.In the recent era of information technology the number of business and individual users of cloud services have been increased and larger volumes of data is being processed and stored in it.As a consequence,the data breaches in the cloud services are also increasing day by day.Due to various security vulnerabilities in the cloud architecture;as a result the cloud environment has become non-resilient.To restore the normal behavior of the cloud,detect the deviations,and achieve higher resilience,anomaly detection becomes essential.The deep learning architectures-based anomaly detection mechanisms uses various monitoring metrics characterize the normal behavior of cloud services and identify the abnormal events.This paper focuses on designing an intelligent deep learning based approach for detecting cloud anomalies in real time to make it more resilient.The deep learning models are trained using features extracted from the system level and network level performance metrics observed in the Transfer Control Protocol(TCP)traces of the simulation.The experimental results of the proposed approach demonstrate a superior performance in terms of higher detection rate and lower false alarm rate when compared to the Support Vector Machine(SVM).
文摘The most common form of cancer for women is breast cancer.Recent advances in medical imaging technologies increase the use of digital mammograms to diagnose breast cancer.Thus,an automated computerized system with high accuracy is needed.In this study,an efficient Deep Learning Architecture(DLA)with a Support Vector Machine(SVM)is designed for breast cancer diagnosis.It combines the ideas from DLA with SVM.The state-of-the-art Visual Geometric Group(VGG)architecture with 16 layers is employed in this study as it uses the small size of 3×3 convolution filters that reduces system complexity.The softmax layer in VGG assumes that the training samples belong to exactly only one class,which is not valid in a real situation,such as in medical image diagnosis.To overcome this situation,SVM is employed instead of the softmax layer in VGG.Data augmentation is also employed as DLA usually requires a large number of samples.VGG model with different SVM kernels is built to classify the mammograms.Results show that the VGG-SVM model has good potential for the classification of Mammographic Image Analysis Society(MIAS)database images with an accuracy of 98.67%,sensitivity of 99.32%,and specificity of 98.34%.
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
文摘现有的多模态间歇过程软测量未考虑过程数据的批次差异及过渡模态的复杂时变特性,影响了间歇过程模态识别的合理性及质量变量在线软测量的准确性。提出了一种基于双边界支持向量数据描述-相关向量回归(double boundary support vector data description-relevance vector regression,DBSVDD-RVR)的间歇过程质量变量在线软测量方法。依据间歇过程离线模态划分获得的各稳定及过渡模态历史数据,建立DBSVDD在线模态识别模型,并引入滑动窗,构建间歇过程在线模态识别策略,利用DBSVDD模型实现在线测量数据的模态识别;在此基础上,构建了基于超球体距离的数据相似度计算方法,选择过渡模态在线数据的相似建模数据集,建立过渡模态的即时学习RVR软测量模型,并依据历史数据建立各稳定模态的RVR软测量模型,实现间歇过程质量变量的在线软测量。青霉素发酵过程的实验结果表明,所提方法有效地提高了间歇过程模态识别的合理性和质量变量在线软测量的准确性。
文摘由于电网企业不断加快数字化转型,利用北斗定位技术将自动获取区域内光伏计量装置经纬度这一关键技术参数。文章充分利用分布式光伏集群内光伏发电装机位置空间相关性,提出一种在弱监督下基于图滤波与支持向量数据描述(support vector data description,SVDD)的分布式光伏集群发电异常检测方法。首先建立分布式光伏集群发电图数据结构模型,通过加权邻接矩阵描述分布式光伏发电点空间耦合性,其次构造图高通滤波器将时域参数转化为频域参数,然后通过SVDD算法优化图滤波结果,进一步挖掘图高通滤波器阈值与输出功率数据之间的关系。结果表明,采用图滤波器和SVDD算法模型方法在分布式光伏发电异常检测精度上有显著提高。
基金Supported by Sichuan Provincial Key Research and Development Program of China(Grant No.2023YFG0351)National Natural Science Foundation of China(Grant No.61833002).
文摘Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.
文摘针对风电机组叶片排水孔堵塞或被雷击穿孔等问题,提出一种非接触式的声学检测方法。该方法首先对采集到的信号转化为时频图,利用中值滤波和自适应阈值的方法将时频图二值化,根据二值化时频图中哨音轮廓特点,提取轮廓信号时域和频域等9个参数作为特征向量,提出了动态半径的支持向量数据描述异常检测模型(dynamic radius support vector data description,DR-SVDD)。将DR-SVDD和SVDD的异常检测模型用于风机叶片哨声诊断,验证了该方法的有效性。