期刊文献+
共找到275篇文章
< 1 2 14 >
每页显示 20 50 100
结合遗传算法的RF-DBN入侵检测方法
1
作者 任俊玲 诸于铭 《中国科技论文》 CAS 2024年第8期937-944,共8页
针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行... 针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行过采样,减少数据集的不平衡度;然后使用随机森林算法实现正异常数据分类,筛选出异常数据;最后采用经GA优化的DBN网络对异常数据进行进一步分类。使用网络安全数据集CICIDS2017进行验证,该方法的准确率达到了99.85%,而且少数类样本的识别精度也有明显提高。 展开更多
关键词 随机森林 遗传算法 BorderlineSMOTE 深度信念网络 数据不平衡 入侵检测
下载PDF
基于DBN的液压泵劣化程度评估方法研究
2
作者 李振宝 伊明 +2 位作者 李富强 张磊 姜万录 《机床与液压》 北大核心 2024年第14期219-226,共8页
针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括... 针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括预加重、分帧和加窗等;对预处理后的信号进行快速傅里叶变换(FFT),得到其频率谱和功率谱,然后让其通过Mel滤波器组,得到信号的对数能量;最后对对数能量进行离散余弦变换,得到信号的倒谱系数和一阶差分系数,并以此构成特征向量。基于DBN方法搭建深度学习模型,对特征向量进行学习,将测试样本导入深度学习模型,对中心弹簧失效程度进行评估,并将倒谱系数和一阶差分系数的识别结果进行对比。结果表明:当选择倒谱系数为特征向量时,具有较高的识别精度,能够有效识别轴向柱塞泵中心弹簧的性能劣化程度。 展开更多
关键词 梅尔频率倒谱系数 深度信念神经网络 轴向柱塞泵 劣化评估
下载PDF
基于PSO-DBN的配电网可靠性分析研究
3
作者 张俊成 崔志威 +1 位作者 陶毅刚 黎敏 《自动化仪表》 CAS 2024年第5期112-117,共6页
为解决缺失数据等条件下配电网的可靠性评估问题,针对配电网可靠性评估时存在评估效果差、计算量大、执行效率低等情况,基于粒子群优化-深度信念网络(PSO-DBN)对配电网可靠性进行分析。首先,设计了基于生成对抗网络(GAN)的电力数据增强... 为解决缺失数据等条件下配电网的可靠性评估问题,针对配电网可靠性评估时存在评估效果差、计算量大、执行效率低等情况,基于粒子群优化-深度信念网络(PSO-DBN)对配电网可靠性进行分析。首先,设计了基于生成对抗网络(GAN)的电力数据增强模型,从而改善电力数据缺失和不平衡等问题。其次,建立了结合深度信念网络(DBN)和粒子群优化(PSO)模型的优化学习网络,从而得到更准确的配电网可靠性分析结果。以IEEE39电力节点系统为基础,对所提模型进行仿真与分析。仿真结果表明,所提模型性能最优。该研究能够为配电网可靠性评估、管理及稳定运行提供借鉴。 展开更多
关键词 电力系统 配电网 可靠性评估 深度学习 深度信念网络 粒子群优化 仿真分析
下载PDF
基于DBN深度学习算法的一站式诉求响应预测方法
4
作者 赵睿 李伟 +2 位作者 王宇飞 李卫卫 杨继芳 《微型电脑应用》 2024年第4期135-139,共5页
为了提高诉求响应的速度,提出了基于机器学习的一站式诉求响应技术。在物理架构中采用事故数据记录器(ADR)服务器和数字化X线摄影术(DR)运行管理,实现一站式诉求响应;利用建模工具来构建例图进行描述诉求响应的运行细节,通过逻辑架构的... 为了提高诉求响应的速度,提出了基于机器学习的一站式诉求响应技术。在物理架构中采用事故数据记录器(ADR)服务器和数字化X线摄影术(DR)运行管理,实现一站式诉求响应;利用建模工具来构建例图进行描述诉求响应的运行细节,通过逻辑架构的感知层、网络层和应用层,实现了对一站式诉求响应的逻辑分析;利用机器学习预测方式和深度置信网络(DBN),实现一站式诉求响应的预测。实验表明,在进行对响应的速度进行测试时,所提出的系统响应所需时间最少为1.1 s,在进行对响应预测的准确性测试时,响应预测的准确性最高为97%。 展开更多
关键词 机器学习 诉求响应 ADR 建模 dbn深度学习算法
下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:70
5
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 dbn(deep BELIEF nets) 神经网络 关系抽取 深层网络 字特征
下载PDF
基于deep belief nets的维吾尔语句子级情感分析 被引量:3
6
作者 衣马木艾山.阿布都力克木 李敏 +3 位作者 李自臣 陈梅 田生伟 禹龙 《计算机应用研究》 CSCD 北大核心 2018年第7期2066-2070,共5页
针对维吾尔语句子情感信息,即喜、怒、哀、乐和客观五分类任务,提出了一种利用深度信念网络(deep belief nets,DBN)模型的深度学习机制进行基于深层语义特征的句子级情感分析方法。该方法通过对维吾尔语情感句及语言特点的深入研究,提... 针对维吾尔语句子情感信息,即喜、怒、哀、乐和客观五分类任务,提出了一种利用深度信念网络(deep belief nets,DBN)模型的深度学习机制进行基于深层语义特征的句子级情感分析方法。该方法通过对维吾尔语情感句及语言特点的深入研究,提取出利于情感分析任务的八项情感特征。为了提高特征对文本语义的表达,将富含词汇深层语义和上下文信息的word embedding特征与情感特征进行融合,作为深度信念网络的输入。利用多层无监督的波尔兹曼机(RBM)训练并提取隐含的深层语义特征,通过有监督的后向传播算法对网络进行微调,进而完成情感分类任务。该方法在维吾尔语句子级情感分类任务中的准确率为83.35%,召回率为84.42%,F值为83.88%。实验结果证明,深度学习模型较浅层的学习模型更合适于文本的情感分类任务,对word embedding特征项的引入,有效地提高了情感分类模型的性能。 展开更多
关键词 维吾尔语 情感分类 深度学习 深度信念网络 词语嵌入
下载PDF
A Real-Time and Ubiquitous Network Attack Detection Based on Deep Belief Network and Support Vector Machine 被引量:7
7
作者 Hao Zhang Yongdan Li +2 位作者 Zhihan Lv Arun Kumar Sangaiah Tao Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期790-799,共10页
In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network... In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions. 展开更多
关键词 deep BELIEF network(dbn) flow calculation frequent pattern INTRUSION detection SLIDING WINDOW support vector machine(SVM)
下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
8
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(dbn)
下载PDF
基于VMD-DBN的矿井涌水量预测方法 被引量:8
9
作者 刘慧 刘桂芹 +2 位作者 宁殿艳 樊娟 陈卫明 《煤田地质与勘探》 EI CAS CSCD 北大核心 2023年第6期13-21,共9页
在煤矿采掘过程中,因矿井涌(突)水造成的人员和财产损失极为严重。为预防涌(突)水灾害事故的发生,掌握涌水量的发展变化规律,开展涌水预测预报尤其是矿井涌水量的精准预计尤为重要,是矿井水害防治中一项重要的工作任务。为提高矿井涌水... 在煤矿采掘过程中,因矿井涌(突)水造成的人员和财产损失极为严重。为预防涌(突)水灾害事故的发生,掌握涌水量的发展变化规律,开展涌水预测预报尤其是矿井涌水量的精准预计尤为重要,是矿井水害防治中一项重要的工作任务。为提高矿井涌水量的预测准确性,针对随时间无明显变化规律的涌水量序列,提出了变分模态分解(Variational Mode Decomposition,VMD)和深度置信网络(Deep Belief Network,DBN)相结合的高效时间序列预测模型。首先通过VMD模态分解技术对原始数据进行去噪,将原始矿井涌水量时间序列分解为若干个本征模态函数(Intrinsic Mode Function,IMF)分量,使各个IMF分量都具有原始时间序列在不同时间尺度下的统计学特征量,降低了原始时间序列的强震荡性和非稳定性。其次针对每个IMF分量,分别建立各自的DBN模型进行训练学习,进而建立起相应的预测网络模型。最后融合各分量预测值得到最终结果。结果显示,VMD-DBN的E_(MA)、E_(MAP)、E_(RMS)和R^(2)分别为9.23、0.76%、11.55和0.97,通过与GA-BP、LSTM、VMD-LSTM、RBM、VMD-RBM和DBN模型的预测值进行对比发现,VMD-DBN模型进行矿井涌水量预测具有更高的预测精度。VMD-DBN模型对于涌水量随时间无明显变化规律、且具有较强震荡性和非平稳的工况具有相对明显的优势,丰富了矿井涌水量预测方法,为智慧矿山的安全监测提供一种新型的技术手段,具有一定的理论价值和现实意义。 展开更多
关键词 矿井涌水量预测 变分模态分解VMD 深度学习 深度置信网络dbn 时间序列
下载PDF
基于VMD-ARIMA-DBN的短期电力负荷预测 被引量:9
10
作者 方娜 陈浩 +1 位作者 邓心 肖威 《电力系统及其自动化学报》 CSCD 北大核心 2023年第6期59-65,共7页
针对短期电力负荷预测精度不足的问题,提出一种基于变分模态分解、深度信念网络、差分自回归移动平均模型的组合预测模型。首先选取电力负荷影响较大的相关参数,采用变分模态分解将负荷数据分解为低频和高频两种分量;然后利用差分自回... 针对短期电力负荷预测精度不足的问题,提出一种基于变分模态分解、深度信念网络、差分自回归移动平均模型的组合预测模型。首先选取电力负荷影响较大的相关参数,采用变分模态分解将负荷数据分解为低频和高频两种分量;然后利用差分自回归移动平均模型和深度信念网络分别对低频和高频两种分量进行预测,为克服深度信念网络参数随机化的缺陷,采用粒子群优化算法优化模型以进一步提高精度;最后组合各模型结果得到最终预测值。实验结果表明,该组合模型较其他模型具有更好的预测性能。 展开更多
关键词 短期负荷预测 变分模态分解 深度信念网络 粒子群优化算法 差分自回归移动平均模型
下载PDF
HUID:DBN-Based Fingerprint Localization and Tracking System with Hybrid UWB and IMU 被引量:3
11
作者 Junchang Sun Rongyan Gu +4 位作者 Shiyin Li Shuai Ma Hongmei Wang Zongyan Li Weizhou Feng 《China Communications》 SCIE CSCD 2023年第2期139-154,共16页
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based... High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively. 展开更多
关键词 Ultra-wideband(UWB) inertial measurement unit(IMU) fingerprints positioning NLoS identification estimated errors mitigation deep belief network(dbn) radial basis function(RBF)
下载PDF
基于DBN深度学习算法的低压台区反窃电诊断 被引量:4
12
作者 任盛 周志飞 +2 位作者 卜龙敏 刘文婕 王艺錂 《电子设计工程》 2023年第4期96-99,104,共5页
当前已有的低压台区反窃电诊断方法很难精准确定窃电用户,导致无法完成反窃电工作。为解决上述问题,基于DBN深度学习算法提出新的低压台区反窃电诊断方法。采用大数据挖掘方法检测反窃电诊断大数据信息,并输出检测过程中产生的反窃电特... 当前已有的低压台区反窃电诊断方法很难精准确定窃电用户,导致无法完成反窃电工作。为解决上述问题,基于DBN深度学习算法提出新的低压台区反窃电诊断方法。采用大数据挖掘方法检测反窃电诊断大数据信息,并输出检测过程中产生的反窃电特征数据,分析反窃电识别数据,并重组通过逆行反窃电定位而形成的随机分布结构。利用DBN深度学习算法建立低压台区反窃电诊断模型,增加训练系数,以消除误差,通过清洗补正反窃电数据、辨识窃电风险和分析窃电行为三个步骤,实现对窃电量的估算。实验结果表明,基于DBN深度学习算法的低压台区反窃电诊断方法能够精准地确定出窃电用户,从而更好地完成反窃电工作。 展开更多
关键词 dbn深度学习 学习算法 低压台区 反窃电诊断
下载PDF
基于CLPSO-IDBN的风电机组轴承故障诊断
13
作者 谢东东 沈艳霞 《组合机床与自动化加工技术》 北大核心 2023年第10期109-113,119,共6页
针对风电机组轴承故障诊断时的数据特征复杂难以提取,故障诊断准确率低,耗费时间长等问题,提出一种综合型学习粒子群算法(comprehensive learning particle swarm optimization,CLPSO)与改进深度置信网络(improved deep belief network,... 针对风电机组轴承故障诊断时的数据特征复杂难以提取,故障诊断准确率低,耗费时间长等问题,提出一种综合型学习粒子群算法(comprehensive learning particle swarm optimization,CLPSO)与改进深度置信网络(improved deep belief network,IDBN)相结合的故障诊断方法。首先在DBN内部添加了迭代误差阈值优化策略构建IDBN,大大减少了训练时间;然后利用CLPSO算法优选IDBN网络结构,运用具有最优结构的IDBN模型从原始信号中提取故障特征,识别轴承的故障类型。仿真实验结果表明,CLPSO-IDBN算法模型具有更高的准确率以及在相同情况时更少的训练时间,在训练集和测试集上的诊断准确率分别达到了98.28%与97%,并且可以平均节省约30%的训练时间,与4种其他方法相比较,证实了新方法的有效性与准确性。 展开更多
关键词 深度置信网络(dbn) 综合学习粒子群算法(CLPSO) 滚动轴承 故障诊断 风电机组
下载PDF
基于深度置信网络的多模态过程故障评估方法及应用 被引量:1
14
作者 张凯 杨朋澄 +1 位作者 彭开香 陈志文 《自动化学报》 EI CAS CSCD 北大核心 2024年第1期89-102,共14页
传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分... 传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性–个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性–个性特征集,通过加权逻辑回归构建故障等级评估模型;最后,将所提方法应用于带钢热连轧生产过程的故障等级评估中.应用结果表明,随着多模态故障等级数据的增加,所提方法的评估准确率逐渐增加,当故障信息充足时,评估准确率可达98.75%;故障信息不足时,与传统方法相比,评估准确率提升近10%. 展开更多
关键词 多模态过程 故障等级评估 共性–个性特征 深度置信网络 带钢热连轧
下载PDF
基于改进狼群算法-深度置信网络(IGWO-DBN)模型的旋风分离器压降预测
15
作者 李清亮 林焕明 +4 位作者 吴振宙 邓立 廖志文 王声明 何伟宏 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期107-115,共9页
针对目前旋风分离器压降计算模型在准确性和实用性上的不足,为更好地指导旋风分离器的结构设计和性能优化,采用深度学习方法对其压降进行了预测。选取了影响压降的7个几何参数,采用深度学习中的深度置信网络(deep belief network,DBN)... 针对目前旋风分离器压降计算模型在准确性和实用性上的不足,为更好地指导旋风分离器的结构设计和性能优化,采用深度学习方法对其压降进行了预测。选取了影响压降的7个几何参数,采用深度学习中的深度置信网络(deep belief network,DBN)对旋风分离器压降数据进行预测,并利用改进的狼群算法(improved grey wolf optimizer,IGWO)对DBN模型的初始化权重和偏置参数进行寻优,构建IGWO-DBN组合模型,同时与几种传统计算模型和机器学习模型的预测结果进行对比。结果表明,IGWO-DBN模型在计算精度上优于Shepherd-Lapple模型、Casal模型等传统计算模型,并优于反向传播神经网络(back propagation neural network,BPNN)、支持向量机(support vector machine,SVM)、极限学习机(extreme learning machine,ELM)等机器学习模型,计算效率大幅提升,且具有较好的泛化性和鲁棒性,可用于旋风分离器压降参数的预测。 展开更多
关键词 狼群算法(GWO) 深度置信网络(dbn) 旋风分离器 压降 模型
下载PDF
空调温控负荷集群参与光伏消纳的潜力评估与互动框架 被引量:1
16
作者 陈璨 杜维柱 +4 位作者 白恺 孙贝贝 孙靓 付新园 吴俊勇 《现代电力》 北大核心 2024年第3期479-489,共11页
空调温控负荷集群作为当下最具调节潜力的需求侧响应资源之一,在削峰、填谷、分布式光伏消纳和电网调控中将发挥重要作用。因此,提出一种电力市场环境下,基于数据驱动和深度置信网络的空调温控负荷集群参与分布式光伏消纳的可调节潜力... 空调温控负荷集群作为当下最具调节潜力的需求侧响应资源之一,在削峰、填谷、分布式光伏消纳和电网调控中将发挥重要作用。因此,提出一种电力市场环境下,基于数据驱动和深度置信网络的空调温控负荷集群参与分布式光伏消纳的可调节潜力评估与互动框架。首先,利用数据驱动构建了基于深度置信网络的可调节潜力评估模型,实时输出温控负荷集群的可调节潜力;其次,考虑功率调整量在一定范围内变化的前提下,构建基于深度置信网络的需求互动模型,对温控负荷集群进行实时温度调控。最后,以冀北地区某10kV馈线作为实际算例进行分析,结果表明:所提框架能够充分利用空调温控负荷集群的可调节潜力,参与分布式光伏的消纳。 展开更多
关键词 空调温控负荷集群 数据驱动 深度置信网络 潜力评估 需求互动
下载PDF
基于DBN模型的遥感图像分类 被引量:72
17
作者 吕启 窦勇 +2 位作者 牛新 徐佳庆 夏飞 《计算机研究与发展》 EI CSCD 北大核心 2014年第9期1911-1918,共8页
遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地... 遥感图像分类是地理信息系统(geographic information system,GIS)的关键技术,对城市规划与管理起到十分重要的作用.近年来,深度学习成为机器学习领域的一个新兴研究方向.深度学习采用模拟人脑多层结构的方式,对数据从低层到高层渐进地进行特征提取,从而发掘数据在时间与空间上的规律,进而提高分类的准确性.深度信念网络(deep belief network,DBN)是一种得到广泛研究与应用的深度学习模型,它结合了无监督学习和有监督学习的优点,对高维数据具有较好的分类能力.提出一种基于DBN模型的遥感图像分类方法,并利用RADARSAT-2卫星6d的极化合成孔径雷达(synthetic aperture radar,SAR)图像进行了验证.实验表明,与支持向量机(SVM)及传统的神经网络(NN)方法相比,基于DBN模型的方法可以取得更好的分类效果. 展开更多
关键词 遥感图像 合成孔径雷达 地物分类 深度学习 受限玻尔兹曼机 深度信念网络
下载PDF
SADBN及其在滚动轴承故障分类识别中的应用 被引量:18
18
作者 杨宇 罗鹏 +1 位作者 甘磊 程军圣 《振动与冲击》 EI CSCD 北大核心 2019年第15期11-16,26,共7页
传统的智能诊断方法一般都是基于"特征提取+分类器"模型,其核心在于特征值的提取以及分类器的设计。针对不同的诊断对象,通常需要根据先验知识提取不同的故障特征值,这必将给最终的诊断结果带来诊断误差;与此同时,传统的分类... 传统的智能诊断方法一般都是基于"特征提取+分类器"模型,其核心在于特征值的提取以及分类器的设计。针对不同的诊断对象,通常需要根据先验知识提取不同的故障特征值,这必将给最终的诊断结果带来诊断误差;与此同时,传统的分类器一般使用浅层模型,这使得其难以表征信号与装备运行状况之间复杂的映射关系。作为深度学习算法典型代表之一的深度信念网络(Deep Belief Network,DBN),可以直接从原始信号中提取特征并具有深度学习能力,因而已受到越来越多研究者的关注。但是DBN依然存在网络结构需要人为设定的缺陷,这也限制了DBN在工程实际中的应用。为解决DBN网络结构难以确定及如何提升其在工程实际应用中的诊断效率问题,提出了一种新的深度信念网络,即结构自适应深度信念网络(Structure Adaptive Deep Belief Network,SADBN)。与DBN相比,SADBN可以自适应地确定网络结构,有效提高诊断效率。对滚动轴承故障振动信号的分析结果表明了改进网络的有效性。 展开更多
关键词 深度学习 dbn 网络结构 SAdbn 滚动轴承故障诊断
下载PDF
基于DBN的深水井控人机界面系统可靠性分析 被引量:13
19
作者 陈洁 陈国明 +3 位作者 李新宏 杨冬冬 耿凯月 刘长鑫 《中国安全科学学报》 CAS CSCD 北大核心 2018年第1期124-129,共6页
为改善深水井控人机配合情况,运用动态贝叶斯网络(DBN)方法分析深水井控人机界面系统的可靠性。基于深水井控人机交互流程,构建系统安全屏障结构图,并转化为对应的DBN模型;依据DBN方法的时间属性,研究系统及各子系统不维修与维修状态... 为改善深水井控人机配合情况,运用动态贝叶斯网络(DBN)方法分析深水井控人机界面系统的可靠性。基于深水井控人机交互流程,构建系统安全屏障结构图,并转化为对应的DBN模型;依据DBN方法的时间属性,研究系统及各子系统不维修与维修状态下可靠度时间分布;借助贝叶斯后验推理及敏感性分析能力,辨识人机界面系统薄弱风险点。研究结果表明:维修因素是影响深水井控人机界面系统可靠性的关键因素;维修条件下,人因可靠性对深水井控人机界面系统可靠性的影响最大。 展开更多
关键词 深水井控 人机界面 动态贝叶斯网络(dbn) 安全屏障 可靠性分析
下载PDF
基于DBN的车载激光点云路侧多目标提取 被引量:18
20
作者 罗海峰 方莉娜 +1 位作者 陈崇成 黄志文 《测绘学报》 EI CSCD 北大核心 2018年第2期234-246,共13页
提出一种基于深度信念网络(DBN)的车载激光点云路侧多目标提取方法。首先通过预处理对原始数据进行分段,并将地面和建筑物点云与路侧目标进行分离;然后利用连通分支聚类分析算法进行路侧点云聚类,并采用基于体素的归一化分割方法分割重... 提出一种基于深度信念网络(DBN)的车载激光点云路侧多目标提取方法。首先通过预处理对原始数据进行分段,并将地面和建筑物点云与路侧目标进行分离;然后利用连通分支聚类分析算法进行路侧点云聚类,并采用基于体素的归一化分割方法分割重叠点云,从而生成独立目标点云;在此基础上,生成基于多方向目标对象的二值图像并展开成二值向量作为独立目标点云的描述特征;最后构建并训练DBN,利用训练好的DBN提取行道树、车辆及杆状目标等3类路侧目标。试验采用两份不同城市道路场景的点云数据,行道树、车辆及杆状目标提取结果的准确率分别达97.31%、97.79%、92.78%,召回率分别达98.30%、98.75%和96.77%,精度分别达95.70%、93.81%和90.00%,F1值分别达97.80%、96.81%和94.73%。试验结果验证了本文的有效性。 展开更多
关键词 车载激光点云 深度信念网络 深度学习 点云分割 路侧目标提取
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部