Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
Both evolution of the Asian monsoon system and the Cenozoic global cooling are thought to be closely linked to the Himalayan—Tibetan orogen. The South China Sea (SCS) with its high sedimentation rates of carbonate\|r...Both evolution of the Asian monsoon system and the Cenozoic global cooling are thought to be closely linked to the Himalayan—Tibetan orogen. The South China Sea (SCS) with its high sedimentation rates of carbonate\|rich hemipelagic sediments offers a unique opportunity to study the variability of the East Asian monsoon, the erosion and weathering of tectonic orogens as well as its possible impact on global and regional climate.Leg 184, the first deep\|sea drilling leg to the seas off China, cored 17 holes at 6 sites in the northern and southern parts of the SCS and recovered 5463m of sediment. The drilling of hemipelagic sediments was exceptionally successful, with core recovery averaging 83%~101%. The 32Ma sequence of deep\|sea sediments recovered during Leg 184 covers almost the entire environmental history of the SCS since its opening. The abnormally high sediment accumulation rates in the Oligocene section are correlative with the incipient sea floor spreading. The bathyal nature of the Oligocenefauna implies that rifting occurred in the Eocene or earlier. Faunal changesfrom the early to late Oligocene are indicative of basin deepening, a trend thatis even more evident in the Miocene section. Sediment deformation, abruptlithologic changes, and a hiatus occur near the Oligocene/Miocene boundary,representing one of the most significant events in the tectonic andenvironmental history of the SCS.展开更多
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East C...A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre circulation at the intermediate depth has been confirmed by the dynamic height calculation based on the Levitus hydrography data. The sandwich transports in the Luzon Strait are consistent with recent hydrographical observations.Model results suggest that the Kuroshio tends to form a loop current in the northeastern South China Sea. The simulated Kuroshio Loop Current is generated by the pressure head at the Pacific side of the Luzon Strait and is enhanced by the β-plane effects. The β - plane appears to be of paramount importance to the South China Sea circulation and to the Luzon Strait transports. Without the β-plane, theLuzon Strait transports would be greatly reduced and the South China Sea circulation would be complete-ly different.展开更多
Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised...Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4–8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.展开更多
Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The re...Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.展开更多
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods.These features include submarine landslides,pockmark fields,shallow free gas...Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods.These features include submarine landslides,pockmark fields,shallow free gas,gas hydrates,mud diapirs and earthquake tsunami,which are widely distributed in the continental slope and reefal islands of the South China Sea.Although the study and assessment of geohazards in the South China Sea came into operation only recently,advances in various aspects are evolving at full speed to comply with National Marine Strategy and‘the Belt and Road’Policy.The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances.This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.展开更多
A new species of deep-water barnacle that belongs to the family Scalpellidae is described from the South China Sea. A rcoscalpellum liui sp. nov. is morphologically similar to A rcoscalpellum gryllum Zevina,but differ...A new species of deep-water barnacle that belongs to the family Scalpellidae is described from the South China Sea. A rcoscalpellum liui sp. nov. is morphologically similar to A rcoscalpellum gryllum Zevina,but differs from the latter by the absence of longitudinal striae on the capitular plates and the presence of caudal appendages with few terminal setae.展开更多
The X-ray fluorescence(XRF)core scanning method is widely applied in studies of sedimentary paleoenvironments due to its convenient pretreatment,nondestructive characteristics,fast execution,continuous scanning,and hi...The X-ray fluorescence(XRF)core scanning method is widely applied in studies of sedimentary paleoenvironments due to its convenient pretreatment,nondestructive characteristics,fast execution,continuous scanning,and high resolution.XRF core scanning for sediments is commonly used in the studies on the South China Sea.This study compares XRF-scanned intensities and measured inductively coupled plasma(ICP)elemental contents of core CS11 in the northeast South China Sea deep basin.The results show that the analyzed elements can be separated into three classes.Class I includes elements with high correlation coefficients,such as Ca,Sr,and Zr;Class II contains elements with average correlation coefficients,such as Fe,Mn,Ti,and Cu;and Class III comprises elements with low correlation coefficients,such as K,Ni,Zn,Rb,and Al.In the South China Sea deep basin,pore water,compaction,and grain size have weak effects on the elemental intensities and contents of short core sediments.Hence,for elements with high correlation coefficients,a linear relationship model can be established by the least-squares method,in which the converted XRF intensities are approximately equal to the measured ICP contents.Based on the established log-ratio calibration model,the resulting ln(K/Ca),ln(Ti/Ca),ln(Fe/Ca),and ln(Zr/Ca)values generally display the same variation trends as the measured curves.The elemental contents and ratios produced by the linear model via the least-squares method and the log-ratio calibration model are expected to provide high-resolution data support for future paleoenvironmental research on the South China Sea deep basin.展开更多
Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin. However, when and how it influenced the hyper-extended basin is unclear.To resolve these issues, a...Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin. However, when and how it influenced the hyper-extended basin is unclear.To resolve these issues, a detailed analysis of the Cenozoic time-varying residual subsidence derived by subtracting the predicted subsidence from the backstripped subsidence was performed along a new seismic reflection line in the western Qiongdongnan Basin. For the first time, a method is proposed to calculate the time-varying strain rates constrained by the faults growth rates, on basis of which, the predicted basement subsidence is obtained with a basin-and lithosphere-scale coupled finite extension model, and the backstripped subsidence is accurately recovered with a modified technique of backstripping to eliminate the effects of later episodes of rifting on earlier sediment thickness. Results show no residual subsidence in 45–28.4 Ma. But after 28.4 Ma, negative residual subsidence occurred, reached and remained ca. -1000 m during 23–11.6 Ma, and reduced dramatically after 11.6 Ma. In the syn-rift period(45–23 Ma), the residual subsidence is ca. -1000 m, however in the post-rift period(23–0 Ma),it is positive of ca. 300 to 1300 m increasing southeastwards. These results suggest that the syn-rift subsidence deficit commenced at 28.4 Ma, while the post-rift excess subsidence occurred after 11.6 Ma.Combined with previous studies, it is inferred that the opposite residual subsidence in the syn-and post-rift periods with similar large wavelengths(>10^(2) km) and km-scale amplitudes are the results of transient dynamic topography induced by deep mantle upwelling beneath the central QDNB, which started to influence the basin at ca. 28.4 Ma, continued into the Middle Miocene, and decayed at ca.11.6 Ma. The initial mantle upwelling with significant dynamic uplift had precipitated considerable continental extension and faulting in the Late Oligocene(28.4–23 Ma). After ca. 11.6 Ma, strong mantle upwelling probably occurred beneath the Leizhou–Hainan area to form vast basaltic lava flow.展开更多
Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater...Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.展开更多
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark whi...BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.展开更多
The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and t...The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.展开更多
An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on ...An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on the deep circulation in the northern SCS.Model results suggest that the relative contribution of these inlets largely depends on the magnitude of the input transport of the overflow,but the northern inlet is more efficient than the southern inlet in driving the deep circulation in the northern SCS.When all of the Luzon overflow occurs through the northern inlet the deep circulation in the northern SCS is enhanced.Conversely,when all of the Luzon overflow occurs through the southern inlet the circulation in the northern SCS is weakened.A Lagrangian trajectory model is also developed and applied to these cases.The Lagrangian results indicate that the location of the Luzon overflow likely has impacts upon the sediment transport into the northern SCS.展开更多
The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Ign...The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Igneous rocks can record important information from deep processes.Deep structures such as faults,basin uplift and depression,Cenozoic basement and magnetic basement are all the results of energy exchange within the earth.The study of the relationship between igneous rocks and deep structures is of great significance for the study of the South China Sea.By using the minimum curvature potential field separation technique and the correlation analysis technique of gravitational and magnetic anomalies,the fusion of gravitational and magnetic data reflecting igneous rocks can be obtained,through which the igneous rocks with high susceptibility/high density or high susceptibility/low density can be identified.In this study area,igneous rocks do not develop in the Yinggehai basin,Qiongdongnan basin,Zengmu basin and Brunei-Sabah basin whilst igneous rocks with high susceptibility/high density or high susceptibility/low density are widely-developed in other basins.In undeveloped igneous areas,faults are also undeveloped the Cenozoic thickness is greater,the magnetic basement depth is greater and the Cenozoic thickness is highly positively correlated with the magnetic basement depth.In igneously developed regions,the distribution pattern of the Qiongtai block is mainly controlled by primary faults,while the distribution of the Zhongxisha block,Xunta block and Yongshu-Taiping block is mainly controlled by secondary faults,the Cenozoic thickness having a low correlation with the depth of the magnetic basement.展开更多
The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and e...The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and evolution process.The SCS has experienced complex geological processes including continental lithospheric breakup,seafloor spreading and oceanic crust subduction,which leads debates for decades.However,there are still no clear answers regarding to the following aspects:the crustal and Moho structure,the structure of the continent-ocean transition zone,the formation and evolution process and geodynamic mechanism,and deep processes and their coupling relationships with the petroliferous basins in the SCS.Under the guidance of the“Deep-Earth”science and technology innovation strategy of the Ministry of Natural Resources,deep structural and comprehensive geological research are carried out in the SCS.Geophysical investigations such as long array-large volume deep reflection seismic,gravity,magnetism and ocean bottom seismometer are carried out.The authors proposed that joint gravitymagnetic-seismic inversion should be used to obtain deep crustal information in the SCS and construct high resolution deep structural sections in different regions of the SCS.This paper systematically interpreted the formation and evolution of the SCS and explored the coupling relationship between deep structure and evolution of Mesozoic-Cenozoic basins in the SCS.It is of great significance for promoting the geosystem scientific research and resource exploration of the SCS.展开更多
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water...The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.展开更多
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS),the high-resolution SCS deep circulation is numerically investigated.The SCS deep circulation shows a...Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS),the high-resolution SCS deep circulation is numerically investigated.The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July),a northeast-southwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn.The sensitivity model experiments illustrate that the Luzon Strait deep overflow is the main factor controlling the seasonal variation in the SCS deep circulation.The SCS surface wind can significantly influence the SCS deep circulation in winter.The Luzon Strait deep overflow transport from the Pacific into the SCS ranges from 0.68×10^(6) m^(3)/s to 1.83×10^(6) m^(3)/s,reaching its maximum in summer(July,up to 1.83×10^(6) m^(3)/s),less in autumn and winter,and the minimum in spring(May,0.68×10^(6) m^(3)/s).In summer,the strong Luzon Strait deep overflow dominates the SCS deep circulation when the role of the SCS surface wind is small.In winter,the weaker Luzon Strait deep overflow and SCS surface wind jointly drive the SCS deep circulation into a northeast-southwest through-flow pattern.The potential vorticity(PV)dissipation in the SCS deep basin reaches its maximum(−0.122 m^(2)/s^(2))in May and its minimum(−0.380 m^(2)/s^(2))in July.展开更多
This study aims to investigate variability of the deep South China Sea(SCS)circulation using the Hybrid Coordinate Ocean Model(HYCOM)global reanalysis product.The results reveal that annual cycle is a dominant compone...This study aims to investigate variability of the deep South China Sea(SCS)circulation using the Hybrid Coordinate Ocean Model(HYCOM)global reanalysis product.The results reveal that annual cycle is a dominant component in the deep SCS circulation.Meanwhile,the boundary circulation strength is the weakest in January and peaks between June and September.The eastern and southern boundary currents strengthen/weaken one to three months earlier than that in the western and northern boundaries.Vector Empirical Orthogonal Functions(VEOF)analysis results reveal that semiannual and intraseasonal fluctuations are significant components,of which the spatial patterns are mainly confined in the northern and western boundary areas as well as the southwestern sub-basin.Wavelet analysis results show the strength of significant fluctuation varies year to year.Trend analysis results indicate a decadal weakening in the deep SCS circulation.An anomalous anticyclonic circulation,50–70 km apart from the slope break,tends to weaken the cyclonic boundary circulation in the western and northern boundaries as well as the southwestern sub-basin.This trend is similar to the observed decadal weakening in the North Atlantic deep circulation.Thus,the findings of this study reveal that the variation of the deep SCS circulation has a remarkable response to the climate change.The mechanisms responsible for the variation are worth pursuing if more observations are available.展开更多
A quantitative study on the community structure and biodiversity of free-living marine nematodes and their relationship with environmental factors in the northern South China Sea were carried out based on the samples ...A quantitative study on the community structure and biodiversity of free-living marine nematodes and their relationship with environmental factors in the northern South China Sea were carried out based on the samples collected at five stations in the deep sea (from 313 to 1 600 m) and one station in shallowwaters (87 m) during the cruise in September, 2010. Results showed that the abundance of marine nematodes ranged from 224 to 1 996 ind./(10 cm2). A total of 69 free-living marine nematode genera, belonging to 26 families and three orders, were identified. The most dominant genera were Sabatieria, Linhystera, Aegialoalaimus and Daptonema according to SIMPER analysis. Results of CLUSTER analysis revealed four types of marine nematode community (or station groups) in the sampling area. In terms of trophic structure, non-selective deposit feeders (1B) and selective deposit feeders (1A) were the dominant trophic types with highest genera numbers and abundances, which implied that organic detritus was the main food source of marine nematodes in the northern South China Sea. The percentage of male nematode was low, ranging from 2.22% to 17.81%, while those of juvenile individuals ranged from 36.99% to 82.09%. For genera level diversity of marine nematodes, Shannon-Wiener diversity indices (H') ranged from 3.76 to 4.57 and had highly significant negative correlation with water depth. In general, diversity indices H' at the five stations in deep sea (over 200 m) were lower than that at the station in shallow waters (87 m). BIOENV analysis showed that the most important environmental factor controlling marine nematode communities was water denth.展开更多
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
文摘Both evolution of the Asian monsoon system and the Cenozoic global cooling are thought to be closely linked to the Himalayan—Tibetan orogen. The South China Sea (SCS) with its high sedimentation rates of carbonate\|rich hemipelagic sediments offers a unique opportunity to study the variability of the East Asian monsoon, the erosion and weathering of tectonic orogens as well as its possible impact on global and regional climate.Leg 184, the first deep\|sea drilling leg to the seas off China, cored 17 holes at 6 sites in the northern and southern parts of the SCS and recovered 5463m of sediment. The drilling of hemipelagic sediments was exceptionally successful, with core recovery averaging 83%~101%. The 32Ma sequence of deep\|sea sediments recovered during Leg 184 covers almost the entire environmental history of the SCS since its opening. The abnormally high sediment accumulation rates in the Oligocene section are correlative with the incipient sea floor spreading. The bathyal nature of the Oligocenefauna implies that rifting occurred in the Eocene or earlier. Faunal changesfrom the early to late Oligocene are indicative of basin deepening, a trend thatis even more evident in the Miocene section. Sediment deformation, abruptlithologic changes, and a hiatus occur near the Oligocene/Miocene boundary,representing one of the most significant events in the tectonic andenvironmental history of the SCS.
基金This study was supported by the Major State Basic Research Program under contract Grant No. 19990 43806'
文摘A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre circulation at the intermediate depth has been confirmed by the dynamic height calculation based on the Levitus hydrography data. The sandwich transports in the Luzon Strait are consistent with recent hydrographical observations.Model results suggest that the Kuroshio tends to form a loop current in the northeastern South China Sea. The simulated Kuroshio Loop Current is generated by the pressure head at the Pacific side of the Luzon Strait and is enhanced by the β-plane effects. The β - plane appears to be of paramount importance to the South China Sea circulation and to the Luzon Strait transports. Without the β-plane, theLuzon Strait transports would be greatly reduced and the South China Sea circulation would be complete-ly different.
基金Supported by the National High Technology Research and Development Program of China (863 Program, 2006AA09Z349)the National Basic Research Program of China (2007CB411703)
文摘Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4–8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.
基金This paper is supported by the National Natural Science Foundation of china (Nos. 40576031, 40476030, 40631007).
文摘Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金funded by the MOST 973 program (No. 2015CB251201)the Guangzhou Marine Geology Survey project (Nos. GZH201400210 and GZH201601040) the National Natural Science Foundation of China (Nos. 91228208 and 41666012)
文摘Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods.These features include submarine landslides,pockmark fields,shallow free gas,gas hydrates,mud diapirs and earthquake tsunami,which are widely distributed in the continental slope and reefal islands of the South China Sea.Although the study and assessment of geohazards in the South China Sea came into operation only recently,advances in various aspects are evolving at full speed to comply with National Marine Strategy and‘the Belt and Road’Policy.The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances.This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA1103040102)the National Natural Science Foundation of China(No.31172054)
文摘A new species of deep-water barnacle that belongs to the family Scalpellidae is described from the South China Sea. A rcoscalpellum liui sp. nov. is morphologically similar to A rcoscalpellum gryllum Zevina,but differs from the latter by the absence of longitudinal striae on the capitular plates and the presence of caudal appendages with few terminal setae.
基金This study was jointly supported by the National Natural Science Foundation of China(Nos.41576058 and 41976192)the Project of China Geological Survey(No.DD20191010)+2 种基金the Shandong Provincial Natural Science Foundation of China(No.ZR2020MD061)the Open Foundation of the State Key Laboratory of Loess and Quaternary Geology(Nos.SKLLQG1707 and SKLLQG1805)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB40000000).
文摘The X-ray fluorescence(XRF)core scanning method is widely applied in studies of sedimentary paleoenvironments due to its convenient pretreatment,nondestructive characteristics,fast execution,continuous scanning,and high resolution.XRF core scanning for sediments is commonly used in the studies on the South China Sea.This study compares XRF-scanned intensities and measured inductively coupled plasma(ICP)elemental contents of core CS11 in the northeast South China Sea deep basin.The results show that the analyzed elements can be separated into three classes.Class I includes elements with high correlation coefficients,such as Ca,Sr,and Zr;Class II contains elements with average correlation coefficients,such as Fe,Mn,Ti,and Cu;and Class III comprises elements with low correlation coefficients,such as K,Ni,Zn,Rb,and Al.In the South China Sea deep basin,pore water,compaction,and grain size have weak effects on the elemental intensities and contents of short core sediments.Hence,for elements with high correlation coefficients,a linear relationship model can be established by the least-squares method,in which the converted XRF intensities are approximately equal to the measured ICP contents.Based on the established log-ratio calibration model,the resulting ln(K/Ca),ln(Ti/Ca),ln(Fe/Ca),and ln(Zr/Ca)values generally display the same variation trends as the measured curves.The elemental contents and ratios produced by the linear model via the least-squares method and the log-ratio calibration model are expected to provide high-resolution data support for future paleoenvironmental research on the South China Sea deep basin.
基金This research was supported by the Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology(NO.MMRKF201805)by CAS Youth Innovation Promotion Association+5 种基金by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0205)by Guangzhou Municipal Science and technology program(NO.201904010285)by K.C.Wong Education Foundation(NO.GJTD2018-13)by Key Laboratory of Marine Mineral Resources,Ministry of Natural Resources(NO.KLMMR-2018-B-06)by Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(NO.ISEE2018PY02)by National Natural Science Foundation of China(NO.42076077)。
文摘Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin. However, when and how it influenced the hyper-extended basin is unclear.To resolve these issues, a detailed analysis of the Cenozoic time-varying residual subsidence derived by subtracting the predicted subsidence from the backstripped subsidence was performed along a new seismic reflection line in the western Qiongdongnan Basin. For the first time, a method is proposed to calculate the time-varying strain rates constrained by the faults growth rates, on basis of which, the predicted basement subsidence is obtained with a basin-and lithosphere-scale coupled finite extension model, and the backstripped subsidence is accurately recovered with a modified technique of backstripping to eliminate the effects of later episodes of rifting on earlier sediment thickness. Results show no residual subsidence in 45–28.4 Ma. But after 28.4 Ma, negative residual subsidence occurred, reached and remained ca. -1000 m during 23–11.6 Ma, and reduced dramatically after 11.6 Ma. In the syn-rift period(45–23 Ma), the residual subsidence is ca. -1000 m, however in the post-rift period(23–0 Ma),it is positive of ca. 300 to 1300 m increasing southeastwards. These results suggest that the syn-rift subsidence deficit commenced at 28.4 Ma, while the post-rift excess subsidence occurred after 11.6 Ma.Combined with previous studies, it is inferred that the opposite residual subsidence in the syn-and post-rift periods with similar large wavelengths(>10^(2) km) and km-scale amplitudes are the results of transient dynamic topography induced by deep mantle upwelling beneath the central QDNB, which started to influence the basin at ca. 28.4 Ma, continued into the Middle Miocene, and decayed at ca.11.6 Ma. The initial mantle upwelling with significant dynamic uplift had precipitated considerable continental extension and faulting in the Late Oligocene(28.4–23 Ma). After ca. 11.6 Ma, strong mantle upwelling probably occurred beneath the Leizhou–Hainan area to form vast basaltic lava flow.
文摘Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.
基金supported by the National 973 Basic Research Program (Grant No. 2009CB219502)National Natural Science Foundation of China (Grant No. 41072084)
文摘BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.
基金The National Basic Research Program(973 Program)of China under contract No.2009CB219401Science and Technology Program of Guangzhou under contract No.201505041038084+2 种基金the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)under contract No.PLN1401the Key Laboratory of Gas Hydrate,Ministry of Land and Resources under contract No.SHW(2014)-DX-01the State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology under contract No.NRE1302
文摘The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.
基金The Foundation of China Ocean Mineral Resources R&D Association under contract No.DY135-E2-2-02the National Natural Science Foundation of China under contract Nos 9142820641976028 and 41806019。
文摘An inverse reduced-gravity model is used to simulate the deep South China Sea(SCS)circulation.A set of experiments are conducted using this model to study the influence of the Luzon overflow through the two inlets on the deep circulation in the northern SCS.Model results suggest that the relative contribution of these inlets largely depends on the magnitude of the input transport of the overflow,but the northern inlet is more efficient than the southern inlet in driving the deep circulation in the northern SCS.When all of the Luzon overflow occurs through the northern inlet the deep circulation in the northern SCS is enhanced.Conversely,when all of the Luzon overflow occurs through the southern inlet the circulation in the northern SCS is weakened.A Lagrangian trajectory model is also developed and applied to these cases.The Lagrangian results indicate that the location of the Luzon overflow likely has impacts upon the sediment transport into the northern SCS.
基金supported by CNOOC Research Institute,the Major National R&D project(Grant No.2008 ZX05025)the National R&D project(Grant No.2017 yfc0602202)。
文摘The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Igneous rocks can record important information from deep processes.Deep structures such as faults,basin uplift and depression,Cenozoic basement and magnetic basement are all the results of energy exchange within the earth.The study of the relationship between igneous rocks and deep structures is of great significance for the study of the South China Sea.By using the minimum curvature potential field separation technique and the correlation analysis technique of gravitational and magnetic anomalies,the fusion of gravitational and magnetic data reflecting igneous rocks can be obtained,through which the igneous rocks with high susceptibility/high density or high susceptibility/low density can be identified.In this study area,igneous rocks do not develop in the Yinggehai basin,Qiongdongnan basin,Zengmu basin and Brunei-Sabah basin whilst igneous rocks with high susceptibility/high density or high susceptibility/low density are widely-developed in other basins.In undeveloped igneous areas,faults are also undeveloped the Cenozoic thickness is greater,the magnetic basement depth is greater and the Cenozoic thickness is highly positively correlated with the magnetic basement depth.In igneously developed regions,the distribution pattern of the Qiongtai block is mainly controlled by primary faults,while the distribution of the Zhongxisha block,Xunta block and Yongshu-Taiping block is mainly controlled by secondary faults,the Cenozoic thickness having a low correlation with the depth of the magnetic basement.
基金This study was financially supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0207,GML2019ZD0208)the China Geological Survey Program(DD20191007).
文摘The South China Sea(SCS)is the hotspot of geological scientific research and nature resource exploration and development due to the potential for enormous hydrocarbon resource development and a complex formation and evolution process.The SCS has experienced complex geological processes including continental lithospheric breakup,seafloor spreading and oceanic crust subduction,which leads debates for decades.However,there are still no clear answers regarding to the following aspects:the crustal and Moho structure,the structure of the continent-ocean transition zone,the formation and evolution process and geodynamic mechanism,and deep processes and their coupling relationships with the petroliferous basins in the SCS.Under the guidance of the“Deep-Earth”science and technology innovation strategy of the Ministry of Natural Resources,deep structural and comprehensive geological research are carried out in the SCS.Geophysical investigations such as long array-large volume deep reflection seismic,gravity,magnetism and ocean bottom seismometer are carried out.The authors proposed that joint gravitymagnetic-seismic inversion should be used to obtain deep crustal information in the SCS and construct high resolution deep structural sections in different regions of the SCS.This paper systematically interpreted the formation and evolution of the SCS and explored the coupling relationship between deep structure and evolution of Mesozoic-Cenozoic basins in the SCS.It is of great significance for promoting the geosystem scientific research and resource exploration of the SCS.
基金Supported by the Science and Technology Project of CNOOC Ltd.(YXKY-2012-SHENHAI-01)China National Science and Technology Major Project(2011ZX05025-003+1 种基金 2016ZX05026-003)the National Natural Science Foundation of China(91128207)
文摘The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.
基金The National Key Research and Development Program of China under contract No.2021YFF0704002the Aoshan Science and Technology Innovation Program of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018ASKJ01-04.
文摘Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS),the high-resolution SCS deep circulation is numerically investigated.The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July),a northeast-southwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn.The sensitivity model experiments illustrate that the Luzon Strait deep overflow is the main factor controlling the seasonal variation in the SCS deep circulation.The SCS surface wind can significantly influence the SCS deep circulation in winter.The Luzon Strait deep overflow transport from the Pacific into the SCS ranges from 0.68×10^(6) m^(3)/s to 1.83×10^(6) m^(3)/s,reaching its maximum in summer(July,up to 1.83×10^(6) m^(3)/s),less in autumn and winter,and the minimum in spring(May,0.68×10^(6) m^(3)/s).In summer,the strong Luzon Strait deep overflow dominates the SCS deep circulation when the role of the SCS surface wind is small.In winter,the weaker Luzon Strait deep overflow and SCS surface wind jointly drive the SCS deep circulation into a northeast-southwest through-flow pattern.The potential vorticity(PV)dissipation in the SCS deep basin reaches its maximum(−0.122 m^(2)/s^(2))in May and its minimum(−0.380 m^(2)/s^(2))in July.
基金The National Key Research and Development Program of China under contract No.2019YFC1408400the National Natural Science Foundation of China under contract Nos 41876029 and 41821004.
文摘This study aims to investigate variability of the deep South China Sea(SCS)circulation using the Hybrid Coordinate Ocean Model(HYCOM)global reanalysis product.The results reveal that annual cycle is a dominant component in the deep SCS circulation.Meanwhile,the boundary circulation strength is the weakest in January and peaks between June and September.The eastern and southern boundary currents strengthen/weaken one to three months earlier than that in the western and northern boundaries.Vector Empirical Orthogonal Functions(VEOF)analysis results reveal that semiannual and intraseasonal fluctuations are significant components,of which the spatial patterns are mainly confined in the northern and western boundary areas as well as the southwestern sub-basin.Wavelet analysis results show the strength of significant fluctuation varies year to year.Trend analysis results indicate a decadal weakening in the deep SCS circulation.An anomalous anticyclonic circulation,50–70 km apart from the slope break,tends to weaken the cyclonic boundary circulation in the western and northern boundaries as well as the southwestern sub-basin.This trend is similar to the observed decadal weakening in the North Atlantic deep circulation.Thus,the findings of this study reveal that the variation of the deep SCS circulation has a remarkable response to the climate change.The mechanisms responsible for the variation are worth pursuing if more observations are available.
基金The Fundamental Research Funds for Central Universities of the Ministry of Education of China from Ocean University of China under contract Nos 201362018 and 201462008the National Natural Science Foundation of China under contract No.41006081the Scientific Research Award Foundation for Outstanding Middle-aged and Young Scientists of Shandong Province under contract No.BS2013HZ008
文摘A quantitative study on the community structure and biodiversity of free-living marine nematodes and their relationship with environmental factors in the northern South China Sea were carried out based on the samples collected at five stations in the deep sea (from 313 to 1 600 m) and one station in shallowwaters (87 m) during the cruise in September, 2010. Results showed that the abundance of marine nematodes ranged from 224 to 1 996 ind./(10 cm2). A total of 69 free-living marine nematode genera, belonging to 26 families and three orders, were identified. The most dominant genera were Sabatieria, Linhystera, Aegialoalaimus and Daptonema according to SIMPER analysis. Results of CLUSTER analysis revealed four types of marine nematode community (or station groups) in the sampling area. In terms of trophic structure, non-selective deposit feeders (1B) and selective deposit feeders (1A) were the dominant trophic types with highest genera numbers and abundances, which implied that organic detritus was the main food source of marine nematodes in the northern South China Sea. The percentage of male nematode was low, ranging from 2.22% to 17.81%, while those of juvenile individuals ranged from 36.99% to 82.09%. For genera level diversity of marine nematodes, Shannon-Wiener diversity indices (H') ranged from 3.76 to 4.57 and had highly significant negative correlation with water depth. In general, diversity indices H' at the five stations in deep sea (over 200 m) were lower than that at the station in shallow waters (87 m). BIOENV analysis showed that the most important environmental factor controlling marine nematode communities was water denth.