期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Assessment of deep groundwater over-exploitation in the North China Plain 被引量:7
1
作者 Jiansheng Shi Zhao Wang Zhaoji Zhang Yuhong Fei Yasong Li Feng'e Zhang Jingsheng Chen Yong Qian 《Geoscience Frontiers》 SCIE CAS 2011年第4期593-598,共6页
A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundw... A series of environmental—geological problems have been caused by over-exploitation of deep groundwater(i.e.,confined aquifer water) in the North China Plain.In order to better understand the status of deep groundwater over-exploitation and the resultant environmental—geological problems on a regional scale,the over-exploitation of groundwater has been assessed by way of the groundwater exploitation potential coefficient(i.e.,the ratio of exploitable amount of deep groundwater to current exploitation), cumulative land subsidence,and long-term average lowering rate of the groundwater table.There is a good correlation among the results calculated by the different methods.On a regional scale,deep groundwater has been over-exploited and there is no further exploitation potential under the current conditions.The groundwater exploitation degree index takes the exploitation in 2003 as the reference for the calculations, so the results mainly reflect the degree of current groundwater exploitation.The results of over-exploitation of deep groundwater obtained by land subsidence data and long-term average rate of depression of the water table mainly reflect environmental—geological problems caused by exploitation of deep groundwater. 展开更多
关键词 North China Plain deep groundwater Assessment of over-exploitation Land subsidence Water table depression
下载PDF
The Hydrogeological Consequences of the Proposed Extraction of the Deep Groundwater in Jordan 被引量:2
2
作者 Elias Salameh 《Journal of Geoscience and Environment Protection》 2021年第8期111-128,共18页
Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, su... Many officials and planners in Jordan have advocated in the last decade extracting the deep brackish, thermal, and salty groundwater resources, desalinate them, and use them for household water supplies. Generally, such groundwater is non-renewable and is found in aquifers underlying fresh renewable groundwater bodies building the base support for them. The deep groundwater feeds the thermal mineralized springs issuing along the eastern escarpment of the Dead Sea-Jordan Rift Valley used for therapeutic purposes. In this article, the geologic set-up of the aquifer series underlying the different parts of the country is outlined to illustrate that all such aquifers extending from ground surface to the impermeable granitic Basement Complex are, in the majority of areas, directly or indirectly interconnected and that extractions from any aquifer, shallow or deep, are effectively taken from the same stock of the groundwater body. Hence, it is concluded that advocating the extraction of the deep salty or brackish groundwater is quasi extracting the same amount of groundwater from the overlying, shallower fresh water aquifers. The deep groundwater issues along the eastern escarpment of the Jordan Rift Valley and is used in household supplies, in irrigation and in spas as curative agent. In addition, the intended use of the deep groundwater to be extracted according to the suggested policy in household supplies requiring desalination, which is a costly unnecessary process accompanied with rigorous environmental ramifications of disposing off the desalination brines. 展开更多
关键词 Exploitation Implications deep groundwater Shallow groundwater Interconnectedness DESALINATION JORDAN
下载PDF
Assessment of Heavy Metals in Deep Groundwater Resources of the Kathmandu Valley, Nepal
3
作者 Suman Man Shrestha Kedar Rijal Megh Raj Pokhrel 《Journal of Environmental Protection》 2016年第4期516-531,共16页
A study was carried out to address distribution of some heavy metals in deep groundwater resources of the Kathmandu Valley. Groundwater samples were analyzed for pH, ORP, EC, iron, manganese, zinc, and arsenic in 41 d... A study was carried out to address distribution of some heavy metals in deep groundwater resources of the Kathmandu Valley. Groundwater samples were analyzed for pH, ORP, EC, iron, manganese, zinc, and arsenic in 41 deep groundwater wells during pre monsoon and post monsoon seasons for two consecutive years. The study showed elevated concentrations of iron and manganese in the groundwater of the valley. The occurrence of elevated concentrations of arsenic was also exhibited and observed up to 0.160 mg/L. The spatial distribution patterns demonstrated elevated levels of EC, iron, manganese, zinc, and arsenic in central groundwater district (CGWD) of the valley. The monitored parameters except ORP are not significantly correlated with studied time series, inferring similar distribution of the metals. Correlation analysis and principal component analysis (PCA) were performed to find out relationships among examined parameters and metals. The ORP has strong negative correlations with iron, manganese, and arsenic, suggesting reductive mobilization mechanism of the metals in the groundwater. PCA results showed that iron and manganese with high positive loading factors were due to common natural source of origin of these metals in the groundwater, while negative loading factors of pH and ORP indicated that iron and manganese mobilization was favorable in low pH and reducing environment. Cluster analysis (CA) evidenced high mineralization in most of the wells in the CGWD. 展开更多
关键词 Heavy Metals deep groundwater Principal Component Analysis Cluster Analysis MINERALIZATION
下载PDF
Analysis of the deep groundwater quality in Daqing district
4
《Global Geology》 1998年第1期33-33,共1页
关键词 deep Analysis of the deep groundwater quality in Daqing district
下载PDF
The environmental negative effect for exploitation of the deep groundwater in mining area
5
《Global Geology》 1998年第1期7-7,共1页
关键词 deep The environmental negative effect for exploitation of the deep groundwater in mining area
下载PDF
The Damaging Effects of Abstracting the Deep Aquifers’Groundwater in Jordan-Quality Constraints
6
作者 Elias Salameh Ghaida Abdallat Taleb Odeh 《Journal of Geoscience and Environment Protection》 2024年第3期250-278,共29页
The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater... The deep aquifers in Jordan contain non-renewable and fossil groundwater and their extraction is quasi a mining process, which ends in the depletion of these resources. Although aquifers in the majority of groundwater basins in Jordan are vertically and horizontally interconnected stratification in different water quality horizons with generally increasing water salinity with the depth is observed. Many officials and planners advocate the extraction of deep salty and brackish water to be desalinated and used in household, industrial, and agricultural uses. In this article, the quality of the groundwater in the different deep aquifers and areas in Jordan is discussed. The results of this study show that the consequences of the deep groundwater exploitation are not restricted to depletion of the deep aquifers but also that the overlying fresh groundwater will, due to vertical and horizontal interconnectedness of the different aquifers, percolate down to replace the extracted deep groundwater. This will cause the down-percolating fresh groundwater to become salinized in the deep saline aquifers, which means that extracting the deep brackish and saline groundwater is not only an emptying process of the deep groundwater but also it is an emptying process of the fresh groundwater overlying them. The results allow to conclude that any extraction of the deep groundwater in areas lying to the north of Ras en Naqab Escarpment will have damaging impacts on the fresh groundwater in the overlying fresh groundwater aquifers. This article strongly advises not to extract the deep brackish and saline groundwater, but to conserve that groundwater as a base supporting the overlying fresh groundwater resources, and that will help in protecting the thermal mineralized water springs used in spas originating from these deep aquifers. The increasing water needs of the country can be covered by the desalination of seawater at Aqaba, which is the only viable option for Jordan at present and in the coming decades. 展开更多
关键词 groundwater Salinity Sources of Salinity Interconnectedness of Aquifers Absurdity of deep groundwater Exploitation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部