Obesity is a critical health condition that severely affects an individual’s quality of life andwell-being.The occurrence of obesity is strongly associated with extreme health conditions,such as cardiac diseases,diab...Obesity is a critical health condition that severely affects an individual’s quality of life andwell-being.The occurrence of obesity is strongly associated with extreme health conditions,such as cardiac diseases,diabetes,hypertension,and some types of cancer.Therefore,it is vital to avoid obesity and or reverse its occurrence.Incorporating healthy food habits and an active lifestyle can help to prevent obesity.In this regard,artificial intelligence(AI)can play an important role in estimating health conditions and detecting obesity and its types.This study aims to see obesity levels in adults by implementing AIenabled machine learning on a real-life dataset.This dataset is in the form of electronic health records(EHR)containing data on several aspects of daily living,such as dietary habits,physical conditions,and lifestyle variables for various participants with different health conditions(underweight,normal,overweight,and obesity type I,II and III),expressed in terms of a variety of features or parameters,such as physical condition,food intake,lifestyle and mode of transportation.Three classifiers,i.e.,eXtreme gradient boosting classifier(XGB),support vector machine(SVM),and artificial neural network(ANN),are implemented to detect the status of several conditions,including obesity types.The findings indicate that the proposed XGB-based system outperforms the existing obesity level estimation methods,achieving overall performance rates of 98.5%and 99.6%in the scenarios explored.展开更多
Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activitie...Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activities of patients.Named entity recognition (NER) and medical relation extraction (MRE) are two basic tasks of MKE.This study aims to improve the recognition accuracy of these two tasks by exploring deep learning methods.Methods This study discussed and built two application scenes of bidirectional long short-term memory combined conditional random field (BiLSTM-CRF) model for NER and MRE tasks.In the data preprocessing of both tasks,a GloVe word embedding model was used to vectorize words.In the NER task,a sequence labeling strategy was used to classify each word tag by the joint probability distribution through the CRF layer.In the MRE task,the medical entity relation category was predicted by transforming the classification problem of a single entity into a sequence classification problem and linking the feature combinations between entities also through the CRF layer.Results Through the validation on the I2B2 2010 public dataset,the BiLSTM-CRF models built in this study got much better results than the baseline methods in the two tasks,where the F1-measure was up to 0.88 in NER task and 0.78 in MRE task.Moreover,the model converged faster and avoided problems such as overfitting.Conclusion This study proved the good performance of deep learning on medical knowledge extraction.It also verified the feasibility of the BiLSTM-CRF model in different application scenarios,laying the foundation for the subsequent work in the EMR field.展开更多
Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and var...Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and components, continued innovation of modelling strategies is required to identify architectures that can best model outcomes. In this work, we trained a Heterogeneous Graph Model(HGM) on electronic health record(EHR) data and used the resulting embedding vector as additional information added to a Convolutional Neural Network(CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captured the relationships between medical concepts, lab tests, and diagnoses, which enhanced predictive performance. We found that adding HGM to a CNN model increased the mortality prediction accuracy up to 4%. This framework served as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.展开更多
In the recent years, deep learning models have addressed many problems in various fields. Meanwhile, technology development has spawned the big data in healthcare rapidly. Nowadays, application of deep learning to sol...In the recent years, deep learning models have addressed many problems in various fields. Meanwhile, technology development has spawned the big data in healthcare rapidly. Nowadays, application of deep learning to solve the problems in healthcare is a hot research direction. This paper introduces the application of deep learning in healthcare extensively. We focus on 7 application areas of deep learning, which are electronic health records (EHR), electrocardiography (ECG), electroencephalogram (EEG), community healthcare, data from wearable devices, drug analysis and genomics analysis. The scope of this paper does not cover medical image processing since other researchers have already substantially reviewed it. In addition, we analyze the merits and drawbacks of the existing works, analyze the existing challenges, and discuss future trends.展开更多
Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can ...Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can think and act in a way that mimics human cognition and decision-making [1]. The foundations of AI can be traced back to early philosophical inquiries into the nature of intelligence and thinking. However, AI is generally considered to have emerged as a formal field of study in the 1940s and 1950s. Pioneering computer scientists at the time theorized that it might be possible to extend basic computer programming concepts using logic and reasoning to develop machines capable of “thinking” like humans. Over time, the definition and goals of AI have evolved. Some theorists argued for a narrower focus on developing computing systems able to efficiently solve problems, while others aimed for a closer replication of human intelligence. Today, AI encompasses a diverse set of techniques used to enable intelligent behavior in machines. Core disciplines that contribute to modern AI research include computer science, mathematics, statistics, linguistics, psychology and cognitive science, and neuroscience. Significant AI approaches used today involve statistical classification models, machine learning, and natural language processing. Classification methods are widely applicable to problems in various domains like healthcare, such as informing diagnostic or treatment decisions based on patterns in data. Dean and Goldreich, 1998, define ML as an approach through which a computer has to learn a model by itself from the data provided but no specification on the sort of model is provided to the computer. They can then predict values for things that are different from the values used in training the models. NLP looks at two interrelated concerns, the task of training computers to understand human languages and the fact that since natural languages are so complex, they lend themselves very well to serving a number of very useful goals when used by computers.展开更多
The explosion of digital healthcare data has led to a surge of data-driven medical research based on machine learning. In recent years, as a powerful technique for big data, deep learning has gained a central position...The explosion of digital healthcare data has led to a surge of data-driven medical research based on machine learning. In recent years, as a powerful technique for big data, deep learning has gained a central position in machine learning circles for its great advantages in feature representation and pattern recognition. This article presents a comprehensive overview of studies that employ deep learning methods to deal with clinical data. Firstly,based on the analysis of the characteristics of clinical data, various types of clinical data(e.g., medical images,clinical notes, lab results, vital signs, and demographic informatics) are discussed and details provided of some public clinical datasets. Secondly, a brief review of common deep learning models and their characteristics is conducted. Then, considering the wide range of clinical research and the diversity of data types, several deep learning applications for clinical data are illustrated: auxiliary diagnosis, prognosis, early warning, and other tasks.Although there are challenges involved in applying deep learning techniques to clinical data, it is still worthwhile to look forward to a promising future for deep learning applications in clinical big data in the direction of precision medicine.展开更多
Decentralized machine learning frameworks,e.g.,federated learning,are emerging to facilitate learning with medical data under privacy protection.It is widely agreed that the establishment of an accurate and robust med...Decentralized machine learning frameworks,e.g.,federated learning,are emerging to facilitate learning with medical data under privacy protection.It is widely agreed that the establishment of an accurate and robust medical learning model requires a large number of continuous synchronous monitoring data of patients from various types of monitoring facilities.However,the clinic monitoring data are usually sparse and imbalanced with errors and time irregularity,leading to inaccurate risk prediction results.To address this issue,this paper designs a medical data resampling and balancing scheme for federated learning to eliminate model biases caused by sample imbalance and provide accurate disease risk prediction on multi-center medical data.Experimental results on a real-world clinical database MIMIC-Ⅳ demonstrate that the proposed method can improve AUC(the area under the receiver operating characteristic) from 50.1% to 62.8%,with a significant performance improvement of accuracy from 76.8% to 82.2%,compared to a vanilla federated learning artificial neural network(ANN).Moreover,we increase the model’s tolerance for missing data from 20% to 50% compared with a stand-alone baseline model.展开更多
为探讨机器学习方法在电子病历领域应用的研究现状、研究热点与前沿,以2000~2022年中国知网数据库和Web of Science核心合集数据库中关于机器学习在电子病历中应用的相关文献为数据来源,运用CiteSpace软件绘制国家/地区、作者、机构、...为探讨机器学习方法在电子病历领域应用的研究现状、研究热点与前沿,以2000~2022年中国知网数据库和Web of Science核心合集数据库中关于机器学习在电子病历中应用的相关文献为数据来源,运用CiteSpace软件绘制国家/地区、作者、机构、关键词共现以及关键词突现5个方面科学知识图谱进行可视化对比分析,以便了解国内外研究的差异,为该领域的研究和发展提供参考。展开更多
基金The authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia,for this research through a grant(NU/IFC/ENT/01/020)under the Institutional Funding Committee at Najran University,Kingdom of Saudi Arabia.
文摘Obesity is a critical health condition that severely affects an individual’s quality of life andwell-being.The occurrence of obesity is strongly associated with extreme health conditions,such as cardiac diseases,diabetes,hypertension,and some types of cancer.Therefore,it is vital to avoid obesity and or reverse its occurrence.Incorporating healthy food habits and an active lifestyle can help to prevent obesity.In this regard,artificial intelligence(AI)can play an important role in estimating health conditions and detecting obesity and its types.This study aims to see obesity levels in adults by implementing AIenabled machine learning on a real-life dataset.This dataset is in the form of electronic health records(EHR)containing data on several aspects of daily living,such as dietary habits,physical conditions,and lifestyle variables for various participants with different health conditions(underweight,normal,overweight,and obesity type I,II and III),expressed in terms of a variety of features or parameters,such as physical condition,food intake,lifestyle and mode of transportation.Three classifiers,i.e.,eXtreme gradient boosting classifier(XGB),support vector machine(SVM),and artificial neural network(ANN),are implemented to detect the status of several conditions,including obesity types.The findings indicate that the proposed XGB-based system outperforms the existing obesity level estimation methods,achieving overall performance rates of 98.5%and 99.6%in the scenarios explored.
基金Supported by the Zhejiang Provincial Natural Science Foundation(No.LQ16H180004)~~
文摘Objectives Medical knowledge extraction (MKE) plays a key role in natural language processing (NLP) research in electronic medical records (EMR),which are the important digital carriers for recording medical activities of patients.Named entity recognition (NER) and medical relation extraction (MRE) are two basic tasks of MKE.This study aims to improve the recognition accuracy of these two tasks by exploring deep learning methods.Methods This study discussed and built two application scenes of bidirectional long short-term memory combined conditional random field (BiLSTM-CRF) model for NER and MRE tasks.In the data preprocessing of both tasks,a GloVe word embedding model was used to vectorize words.In the NER task,a sequence labeling strategy was used to classify each word tag by the joint probability distribution through the CRF layer.In the MRE task,the medical entity relation category was predicted by transforming the classification problem of a single entity into a sequence classification problem and linking the feature combinations between entities also through the CRF layer.Results Through the validation on the I2B2 2010 public dataset,the BiLSTM-CRF models built in this study got much better results than the baseline methods in the two tasks,where the F1-measure was up to 0.88 in NER task and 0.78 in MRE task.Moreover,the model converged faster and avoided problems such as overfitting.Conclusion This study proved the good performance of deep learning on medical knowledge extraction.It also verified the feasibility of the BiLSTM-CRF model in different application scenarios,laying the foundation for the subsequent work in the EMR field.
文摘Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and components, continued innovation of modelling strategies is required to identify architectures that can best model outcomes. In this work, we trained a Heterogeneous Graph Model(HGM) on electronic health record(EHR) data and used the resulting embedding vector as additional information added to a Convolutional Neural Network(CNN) model for predicting in-hospital mortality. We show that the additional information provided by including time as a vector in the embedding captured the relationships between medical concepts, lab tests, and diagnoses, which enhanced predictive performance. We found that adding HGM to a CNN model increased the mortality prediction accuracy up to 4%. This framework served as a foundation for future experiments involving different EHR data types on important healthcare prediction tasks.
基金supported by US National Science Foundation (Nos. DBI-1356669 and Ⅲ-1526012)
文摘In the recent years, deep learning models have addressed many problems in various fields. Meanwhile, technology development has spawned the big data in healthcare rapidly. Nowadays, application of deep learning to solve the problems in healthcare is a hot research direction. This paper introduces the application of deep learning in healthcare extensively. We focus on 7 application areas of deep learning, which are electronic health records (EHR), electrocardiography (ECG), electroencephalogram (EEG), community healthcare, data from wearable devices, drug analysis and genomics analysis. The scope of this paper does not cover medical image processing since other researchers have already substantially reviewed it. In addition, we analyze the merits and drawbacks of the existing works, analyze the existing challenges, and discuss future trends.
文摘Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can think and act in a way that mimics human cognition and decision-making [1]. The foundations of AI can be traced back to early philosophical inquiries into the nature of intelligence and thinking. However, AI is generally considered to have emerged as a formal field of study in the 1940s and 1950s. Pioneering computer scientists at the time theorized that it might be possible to extend basic computer programming concepts using logic and reasoning to develop machines capable of “thinking” like humans. Over time, the definition and goals of AI have evolved. Some theorists argued for a narrower focus on developing computing systems able to efficiently solve problems, while others aimed for a closer replication of human intelligence. Today, AI encompasses a diverse set of techniques used to enable intelligent behavior in machines. Core disciplines that contribute to modern AI research include computer science, mathematics, statistics, linguistics, psychology and cognitive science, and neuroscience. Significant AI approaches used today involve statistical classification models, machine learning, and natural language processing. Classification methods are widely applicable to problems in various domains like healthcare, such as informing diagnostic or treatment decisions based on patterns in data. Dean and Goldreich, 1998, define ML as an approach through which a computer has to learn a model by itself from the data provided but no specification on the sort of model is provided to the computer. They can then predict values for things that are different from the values used in training the models. NLP looks at two interrelated concerns, the task of training computers to understand human languages and the fact that since natural languages are so complex, they lend themselves very well to serving a number of very useful goals when used by computers.
基金supported in part by the National Natural Science Foundation of China (Nos. 61772552 and 61772557)the 111 Project (No. B18059)the Hunan Provincial Science and Technology Program (No. 2018WK4001)
文摘The explosion of digital healthcare data has led to a surge of data-driven medical research based on machine learning. In recent years, as a powerful technique for big data, deep learning has gained a central position in machine learning circles for its great advantages in feature representation and pattern recognition. This article presents a comprehensive overview of studies that employ deep learning methods to deal with clinical data. Firstly,based on the analysis of the characteristics of clinical data, various types of clinical data(e.g., medical images,clinical notes, lab results, vital signs, and demographic informatics) are discussed and details provided of some public clinical datasets. Secondly, a brief review of common deep learning models and their characteristics is conducted. Then, considering the wide range of clinical research and the diversity of data types, several deep learning applications for clinical data are illustrated: auxiliary diagnosis, prognosis, early warning, and other tasks.Although there are challenges involved in applying deep learning techniques to clinical data, it is still worthwhile to look forward to a promising future for deep learning applications in clinical big data in the direction of precision medicine.
基金supported by Hubei Provincial Development and Reform Commission Program"Hubei Big Data Analysis Platform and Intelligent Service Project for Medical and Health"。
文摘Decentralized machine learning frameworks,e.g.,federated learning,are emerging to facilitate learning with medical data under privacy protection.It is widely agreed that the establishment of an accurate and robust medical learning model requires a large number of continuous synchronous monitoring data of patients from various types of monitoring facilities.However,the clinic monitoring data are usually sparse and imbalanced with errors and time irregularity,leading to inaccurate risk prediction results.To address this issue,this paper designs a medical data resampling and balancing scheme for federated learning to eliminate model biases caused by sample imbalance and provide accurate disease risk prediction on multi-center medical data.Experimental results on a real-world clinical database MIMIC-Ⅳ demonstrate that the proposed method can improve AUC(the area under the receiver operating characteristic) from 50.1% to 62.8%,with a significant performance improvement of accuracy from 76.8% to 82.2%,compared to a vanilla federated learning artificial neural network(ANN).Moreover,we increase the model’s tolerance for missing data from 20% to 50% compared with a stand-alone baseline model.
文摘为探讨机器学习方法在电子病历领域应用的研究现状、研究热点与前沿,以2000~2022年中国知网数据库和Web of Science核心合集数据库中关于机器学习在电子病历中应用的相关文献为数据来源,运用CiteSpace软件绘制国家/地区、作者、机构、关键词共现以及关键词突现5个方面科学知识图谱进行可视化对比分析,以便了解国内外研究的差异,为该领域的研究和发展提供参考。