This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Ne...This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development.展开更多
Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of s...Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.展开更多
In recent years,with the development of machine learning and deep learning,it is possible to identify and even control crop diseases by using electronic devices instead of manual observation.In this paper,an image rec...In recent years,with the development of machine learning and deep learning,it is possible to identify and even control crop diseases by using electronic devices instead of manual observation.In this paper,an image recognition method of citrus diseases based on deep learning is proposed.We built a citrus image dataset including six common citrus diseases.The deep learning network is used to train and learn these images,which can effectively identify and classify crop diseases.In the experiment,we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed,model size,accuracy.Results show that our method reduces the prediction time consumption and model size while keeping a good classification accuracy.Finally,we discuss the significance of using MobileNetV2 to identify and classify agricultural diseases in mobile terminal,and put forward relevant suggestions.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov...Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.展开更多
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seaml...Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seamless and error-free HCI.HGRoc technology is pivotal in healthcare and communication for the deaf community.Despite significant advancements in computer vision-based gesture recognition for language understanding,two considerable challenges persist in this field:(a)limited and common gestures are considered,(b)processing multiple channels of information across a network takes huge computational time during discriminative feature extraction.Therefore,a novel hand vision-based convolutional neural network(CNN)model named(HVCNNM)offers several benefits,notably enhanced accuracy,robustness to variations,real-time performance,reduced channels,and scalability.Additionally,these models can be optimized for real-time performance,learn from large amounts of data,and are scalable to handle complex recognition tasks for efficient human-computer interaction.The proposed model was evaluated on two challenging datasets,namely the Massey University Dataset(MUD)and the American Sign Language(ASL)Alphabet Dataset(ASLAD).On the MUD and ASLAD datasets,HVCNNM achieved a score of 99.23% and 99.00%,respectively.These results demonstrate the effectiveness of CNN as a promising HGRoc approach.The findings suggest that the proposed model have potential roles in applications such as sign language recognition,human-computer interaction,and robotics.展开更多
Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automa...Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community.展开更多
Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being...Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.展开更多
In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia...In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.展开更多
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c...The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera im...The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.展开更多
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods...Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.展开更多
Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases wa...Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively.展开更多
Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or sec...The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.展开更多
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe...For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.展开更多
文摘This study delves into the applications,challenges,and future directions of deep learning techniques in the field of image recognition.Deep learning,particularly Convolutional Neural Networks(CNNs),Recurrent Neural Networks(RNNs),and Generative Adversarial Networks(GANs),has become key to enhancing the precision and efficiency of image recognition.These models are capable of processing complex visual data,facilitating efficient feature extraction and image classification.However,acquiring and annotating high-quality,diverse datasets,addressing imbalances in datasets,and model training and optimization remain significant challenges in this domain.The paper proposes strategies for improving data augmentation,optimizing model architectures,and employing automated model optimization tools to address these challenges,while also emphasizing the importance of considering ethical issues in technological advancements.As technology continues to evolve,the application of deep learning in image recognition will further demonstrate its potent capability to solve complex problems,driving society towards more inclusive and diverse development.
基金National Natural Science Foundation of China(82274411)Science and Technology Innovation Program of Hunan Province(2022RC1021)Leading Research Project of Hunan University of Chinese Medicine(2022XJJB002).
文摘Objective To build a dataset encompassing a large number of stained tongue coating images and process it using deep learning to automatically recognize stained tongue coating images.Methods A total of 1001 images of stained tongue coating from healthy students at Hunan University of Chinese Medicine and 1007 images of pathological(non-stained)tongue coat-ing from hospitalized patients at The First Hospital of Hunan University of Chinese Medicine withlungcancer;diabetes;andhypertensionwerecollected.Thetongueimageswererandomi-zed into the training;validation;and testing datasets in a 7:2:1 ratio.A deep learning model was constructed using the ResNet50 for recognizing stained tongue coating in the training and validation datasets.The training period was 90 epochs.The model’s performance was evaluated by its accuracy;loss curve;recall;F1 score;confusion matrix;receiver operating characteristic(ROC)curve;and precision-recall(PR)curve in the tasks of predicting stained tongue coating images in the testing dataset.The accuracy of the deep learning model was compared with that of attending physicians of traditional Chinese medicine(TCM).Results The training results showed that after 90 epochs;the model presented an excellent classification performance.The loss curve and accuracy were stable;showing no signs of overfitting.The model achieved an accuracy;recall;and F1 score of 92%;91%;and 92%;re-spectively.The confusion matrix revealed an accuracy of 92%for the model and 69%for TCM practitioners.The areas under the ROC and PR curves were 0.97 and 0.95;respectively.Conclusion The deep learning model constructed using ResNet50 can effectively recognize stained coating images with greater accuracy than visual inspection of TCM practitioners.This model has the potential to assist doctors in identifying false tongue coating and prevent-ing misdiagnosis.
基金the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,http://kjt.hunan.gov.cn/+5 种基金in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/,in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/.Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.
文摘In recent years,with the development of machine learning and deep learning,it is possible to identify and even control crop diseases by using electronic devices instead of manual observation.In this paper,an image recognition method of citrus diseases based on deep learning is proposed.We built a citrus image dataset including six common citrus diseases.The deep learning network is used to train and learn these images,which can effectively identify and classify crop diseases.In the experiment,we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed,model size,accuracy.Results show that our method reduces the prediction time consumption and model size while keeping a good classification accuracy.Finally,we discuss the significance of using MobileNetV2 to identify and classify agricultural diseases in mobile terminal,and put forward relevant suggestions.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)and the Soonchunhyang University Research Fund.
文摘Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
基金funded by Researchers Supporting Project Number(RSPD2024 R947),King Saud University,Riyadh,Saudi Arabia.
文摘Hand gestures have been used as a significant mode of communication since the advent of human civilization.By facilitating human-computer interaction(HCI),hand gesture recognition(HGRoc)technology is crucial for seamless and error-free HCI.HGRoc technology is pivotal in healthcare and communication for the deaf community.Despite significant advancements in computer vision-based gesture recognition for language understanding,two considerable challenges persist in this field:(a)limited and common gestures are considered,(b)processing multiple channels of information across a network takes huge computational time during discriminative feature extraction.Therefore,a novel hand vision-based convolutional neural network(CNN)model named(HVCNNM)offers several benefits,notably enhanced accuracy,robustness to variations,real-time performance,reduced channels,and scalability.Additionally,these models can be optimized for real-time performance,learn from large amounts of data,and are scalable to handle complex recognition tasks for efficient human-computer interaction.The proposed model was evaluated on two challenging datasets,namely the Massey University Dataset(MUD)and the American Sign Language(ASL)Alphabet Dataset(ASLAD).On the MUD and ASLAD datasets,HVCNNM achieved a score of 99.23% and 99.00%,respectively.These results demonstrate the effectiveness of CNN as a promising HGRoc approach.The findings suggest that the proposed model have potential roles in applications such as sign language recognition,human-computer interaction,and robotics.
基金supported from the National Philosophy and Social Sciences Foundation(Grant No.20BTQ065).
文摘Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community.
文摘Cyberspace is extremely dynamic,with new attacks arising daily.Protecting cybersecurity controls is vital for network security.Deep Learning(DL)models find widespread use across various fields,with cybersecurity being one of the most crucial due to their rapid cyberattack detection capabilities on networks and hosts.The capabilities of DL in feature learning and analyzing extensive data volumes lead to the recognition of network traffic patterns.This study presents novel lightweight DL models,known as Cybernet models,for the detection and recognition of various cyber Distributed Denial of Service(DDoS)attacks.These models were constructed to have a reasonable number of learnable parameters,i.e.,less than 225,000,hence the name“lightweight.”This not only helps reduce the number of computations required but also results in faster training and inference times.Additionally,these models were designed to extract features in parallel from 1D Convolutional Neural Networks(CNN)and Long Short-Term Memory(LSTM),which makes them unique compared to earlier existing architectures and results in better performance measures.To validate their robustness and effectiveness,they were tested on the CIC-DDoS2019 dataset,which is an imbalanced and large dataset that contains different types of DDoS attacks.Experimental results revealed that bothmodels yielded promising results,with 99.99% for the detectionmodel and 99.76% for the recognition model in terms of accuracy,precision,recall,and F1 score.Furthermore,they outperformed the existing state-of-the-art models proposed for the same task.Thus,the proposed models can be used in cyber security research domains to successfully identify different types of attacks with a high detection and recognition rate.
基金funded by Researchers Supporting Program at King Saud University,(RSPD2024R809).
文摘In blood or bone marrow,leukemia is a form of cancer.A person with leukemia has an expansion of white blood cells(WBCs).It primarily affects children and rarely affects adults.Treatment depends on the type of leukemia and the extent to which cancer has established throughout the body.Identifying leukemia in the initial stage is vital to providing timely patient care.Medical image-analysis-related approaches grant safer,quicker,and less costly solutions while ignoring the difficulties of these invasive processes.It can be simple to generalize Computer vision(CV)-based and image-processing techniques and eradicate human error.Many researchers have implemented computer-aided diagnosticmethods andmachine learning(ML)for laboratory image analysis,hopefully overcoming the limitations of late leukemia detection and determining its subgroups.This study establishes a Marine Predators Algorithm with Deep Learning Leukemia Cancer Classification(MPADL-LCC)algorithm onMedical Images.The projectedMPADL-LCC system uses a bilateral filtering(BF)technique to pre-process medical images.The MPADL-LCC system uses Faster SqueezeNet withMarine Predators Algorithm(MPA)as a hyperparameter optimizer for feature extraction.Lastly,the denoising autoencoder(DAE)methodology can be executed to accurately detect and classify leukemia cancer.The hyperparameter tuning process using MPA helps enhance leukemia cancer classification performance.Simulation results are compared with other recent approaches concerning various measurements and the MPADL-LCC algorithm exhibits the best results over other recent approaches.
基金supported by the“Human Resources Program in Energy Technol-ogy”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and Granted Financial Resources from the Ministry of Trade,Industry,and Energy,Republic of Korea(No.20204010600090)The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported in part by the Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,grant numbers ZXL2021425 and ZXL2022476Doctor of Innovation and Entrepreneurship Program in Jiangsu Province,grant number JSSCBS20211440+6 种基金Jiangsu Province Key R&D Program,grant number BE2019682Natural Science Foundation of Jiangsu Province,grant number BK20200214National Key R&D Program of China,grant number 2017YFB0403701National Natural Science Foundation of China,grant numbers 61605210,61675226,and 62075235Youth Innovation Promotion Association of Chinese Academy of Sciences,grant number 2019320Frontier Science Research Project of the Chinese Academy of Sciences,grant number QYZDB-SSW-JSC03Strategic Priority Research Program of the Chinese Academy of Sciences,grant number XDB02060000.
文摘The prediction of fundus fluorescein angiography(FFA)images from fundus structural images is a cutting-edge research topic in ophthalmological image processing.Prediction comprises estimating FFA from fundus camera imaging,single-phase FFA from scanning laser ophthalmoscopy(SLO),and three-phase FFA also from SLO.Although many deep learning models are available,a single model can only perform one or two of these prediction tasks.To accomplish three prediction tasks using a unified method,we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network.The three prediction tasks are processed as follows:data preparation,network training under FFA supervision,and FFA image prediction from fundus structure images on a test set.By comparing the FFA images predicted by our model,pix2pix,and CycleGAN,we demonstrate the remarkable progress achieved by our proposal.The high performance of our model is validated in terms of the peak signal-to-noise ratio,structural similarity index,and mean squared error.
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
基金Ministry of Education,Youth and Sports of the Chezk Republic,Grant/Award Numbers:SP2023/039,SP2023/042the European Union under the REFRESH,Grant/Award Number:CZ.10.03.01/00/22_003/0000048。
文摘Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R263)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabiathe Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR39.
文摘Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively.
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘The development of artificial intelligence (AI), particularly deep learning, has made it possible to accelerate and improve the processing of data collected in different fields (commerce, medicine, surveillance or security, agriculture, etc.). Most related works use open source consistent image databases. This is the case for ImageNet reference data such as coco data, IP102, CIFAR-10, STL-10 and many others with variability representatives. The consistency of its images contributes to the spectacular results observed in its fields with deep learning. The application of deep learning which is making its debut in geology does not, to our knowledge, include a database of microscopic images of thin sections of open source rock minerals. In this paper, we evaluate three optimizers under the AlexNet architecture to check whether our acquired mineral images have object features or patterns that are clear and distinct to be extracted by a neural network. These are thin sections of magmatic rocks (biotite and 2-mica granite, granodiorite, simple granite, dolerite, charnokite and gabbros, etc.) which served as support. We use two hyper-parameters: the number of epochs to perform complete rounds on the entire data set and the “learning rate” to indicate how quickly the weights in the network will be modified during optimization. Using Transfer Learning, the three (3) optimizers all based on the gradient descent methods of Stochastic Momentum Gradient Descent (sgdm), Root Mean Square Propagation (RMSprop) algorithm and Adaptive Estimation of moment (Adam) achieved better performance. The recorded results indicate that the Momentum optimizer achieved the best scores respectively of 96.2% with a learning step set to 10−3 for a fixed choice of 350 epochs during this variation and 96, 7% over 300 epochs for the same value of the learning step. This performance is expected to provide excellent insight into image quality for future studies. Then they participate in the development of an intelligent system for the identification and classification of minerals, seven (7) in total (quartz, biotite, amphibole, plagioclase, feldspar, muscovite, pyroxene) and rocks.
文摘For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance.