Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-sec...Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.展开更多
It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimati...It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimation (CSS). The different preparing temperature effects on CdS/CdTe solar cells and deep-level impurities have been investigated by I-V and C-V measurements and deep level transient spectroscopy (DLTS). By comparison, less dark saturated current density, higher carrier concentration, and better photovoltaic performance are demonstrated in a 580℃sample. Also there is less deep-level impurity recombination, because the lower hole trap concentration is present in this sample. In addition, three deep levels, Ev + 0.341 eV(H4), E, + 0.226 eV(HS) and Ec - 0.147 eV(E3), are found in the 580℃sample, and the possible source of deep levels is analysed and discussed.展开更多
Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep...Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.展开更多
Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscop...Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.展开更多
Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of5.5×10^(13), 1.7×10^(14), and 3.3×1014 e cm^(-2). The forward voltage drop, minority carrier lifetime, and d...Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of5.5×10^(13), 1.7×10^(14), and 3.3×1014 e cm^(-2). The forward voltage drop, minority carrier lifetime, and deep level transient spectroscopy(DLTS) characteristics of silicon p–n junction diodes before and after irradiation were compared. At the fluence of 3.3×10^(14) e cm^(-2), the forward voltage drop increased from 1.25 V at 0.5 MeV to 7.96μs at 5.0 MeV, while the minority carrier lifetime decreased significantly from 7.09 ls at 0.5 MeV to 0.06μs at 5.0 MeV. Six types of changes in the energy levels in DLTS spectra were analyzed and discussed.展开更多
The widely used deep level transient spectroscopy(DLTS) theory and data analysis usually assume that the defect level distribution is uniform through the depth of the depletion region of the n–p junction. In this w...The widely used deep level transient spectroscopy(DLTS) theory and data analysis usually assume that the defect level distribution is uniform through the depth of the depletion region of the n–p junction. In this work we introduce the concept of effective Fermi level of the steady state of semiconductor, by using which deep level transient spectroscopy depth profiling(DLTSDP) is proposed. Based on the relationship of its transition free energy level(TFEL) and the effective Fermi level, the rules of detectivity of the defect levels are listed. Computer simulation of DLTSDP is presented and compared with experimental data. The experimental DLTS data are compared with what the DLTSDP selection rules predicted. The agreement is satisfactory.展开更多
Radiation damage produced in 4H-SiC by electrons of different doses is presented by using multiple characterization techniques. Raman spectra results indicate that SiC crystal structures are essentially impervious to ...Radiation damage produced in 4H-SiC by electrons of different doses is presented by using multiple characterization techniques. Raman spectra results indicate that SiC crystal structures are essentially impervious to 10 Me V electron irradiation with doses up to 3000 kGy. However, irradiation indeed leads to the generation of various defects, which are evaluated through photoluminescence(PL) and deep level transient spectroscopy(DLTS). The PL spectra feature a prominent broad band centered at 500 nm, accompanied by several smaller peaks ranging from 660 to 808 nm. The intensity of each PL peak demonstrates a linear correlation with the irradiation dose, indicating a proportional increase in defect concentration during irradiation. The DLTS spectra reveal several thermally unstable and stable defects that exhibit similarities at low irradiation doses.Notably, after irradiating at the higher dose of 1000 kGy, a new stable defect labeled as R_(2)(Ec-0.51 eV) appeared after annealing at 800 K. Furthermore, the impact of irradiation-induced defects on SiC junction barrier Schottky diodes is discussed. It is observed that high-dose electron irradiation converts SiC n-epilayers to semi-insulating layers. However, subjecting the samples to a temperature of only 800 K results in a significant reduction in resistance due to the annealing out of unstable defects.展开更多
无论氢在电子器件内部以何种形式(H2分子、H原子或H+离子)存在,均会对电子器件电离损伤产生作用,进而影响器件的抗辐照能力。本文深入研究了氢气和空气气氛条件下1 Me V电子辐照栅控横向PNP(GLPNP)型双极晶体管的辐射损伤缺陷演化行为...无论氢在电子器件内部以何种形式(H2分子、H原子或H+离子)存在,均会对电子器件电离损伤产生作用,进而影响器件的抗辐照能力。本文深入研究了氢气和空气气氛条件下1 Me V电子辐照栅控横向PNP(GLPNP)型双极晶体管的辐射损伤缺陷演化行为。利用Keithley 4200SCS半导体参数测试仪对不同气氛下辐照过程中晶体管进行在线原位电性能参数测试,研究晶体管电性能退化与电子辐照注量和氢气深度之间的关系;基于栅扫技术(GS)和深能级瞬态谱技术(DLTS),研究双极晶体管中氢诱导电离损伤缺陷演化的基本特征。研究表明,与空气气氛相比,氢气气氛下电子辐照导致GLPNP的基极电流增加显著,而集电极电流明显降低,产生更多的氧化物电荷和界面态,这些现象均说明氢气加剧双极晶体管的电离辐射损伤。展开更多
基金supported by ShanghaiTech University Startup Fund 2017F0203-000-14the National Natural Science Foundation of China(Grant No.52131303)+1 种基金Natural Science Foundation of Shanghai(Grant No.22ZR1442300)in part by CAS Strategic Science and Technology Program(Grant No.XDA18000000).
文摘Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘It is well known that preparing temperatures and defects are highly related to deep-level impurities. In our studies, the CdTe polycrystalline films have been prepared at various temperatures by close spaced sublimation (CSS). The different preparing temperature effects on CdS/CdTe solar cells and deep-level impurities have been investigated by I-V and C-V measurements and deep level transient spectroscopy (DLTS). By comparison, less dark saturated current density, higher carrier concentration, and better photovoltaic performance are demonstrated in a 580℃sample. Also there is less deep-level impurity recombination, because the lower hole trap concentration is present in this sample. In addition, three deep levels, Ev + 0.341 eV(H4), E, + 0.226 eV(HS) and Ec - 0.147 eV(E3), are found in the 580℃sample, and the possible source of deep levels is analysed and discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 60506004)the National High Technology Research and Development Program of China (Grant No. 2003AA513010)
文摘Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev+0.128~eV, originates from the vacancy of Cd (VCd. The electron trap E1, found at Ec-0.178~eV, is considered to be correlated with the interstitial Cui= in CdTe.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575124)
文摘Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.
基金supported by the Beijing education and scientific research department(No.KM201510005008)
文摘Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of5.5×10^(13), 1.7×10^(14), and 3.3×1014 e cm^(-2). The forward voltage drop, minority carrier lifetime, and deep level transient spectroscopy(DLTS) characteristics of silicon p–n junction diodes before and after irradiation were compared. At the fluence of 3.3×10^(14) e cm^(-2), the forward voltage drop increased from 1.25 V at 0.5 MeV to 7.96μs at 5.0 MeV, while the minority carrier lifetime decreased significantly from 7.09 ls at 0.5 MeV to 0.06μs at 5.0 MeV. Six types of changes in the energy levels in DLTS spectra were analyzed and discussed.
基金the China Triumph International Engineering Company (CTIEC), Shanghai, China, which offered generous financial support for this work
文摘The widely used deep level transient spectroscopy(DLTS) theory and data analysis usually assume that the defect level distribution is uniform through the depth of the depletion region of the n–p junction. In this work we introduce the concept of effective Fermi level of the steady state of semiconductor, by using which deep level transient spectroscopy depth profiling(DLTSDP) is proposed. Based on the relationship of its transition free energy level(TFEL) and the effective Fermi level, the rules of detectivity of the defect levels are listed. Computer simulation of DLTSDP is presented and compared with experimental data. The experimental DLTS data are compared with what the DLTSDP selection rules predicted. The agreement is satisfactory.
基金supported by the Open Fund(2022E10015)of the Key Laboratory of Power Semiconductor Materials and Devices of Zhejiang Province&Institute of Advanced Semiconductors,ZJU-Hangzhou Global Scientific and Technological Innovation Center。
文摘Radiation damage produced in 4H-SiC by electrons of different doses is presented by using multiple characterization techniques. Raman spectra results indicate that SiC crystal structures are essentially impervious to 10 Me V electron irradiation with doses up to 3000 kGy. However, irradiation indeed leads to the generation of various defects, which are evaluated through photoluminescence(PL) and deep level transient spectroscopy(DLTS). The PL spectra feature a prominent broad band centered at 500 nm, accompanied by several smaller peaks ranging from 660 to 808 nm. The intensity of each PL peak demonstrates a linear correlation with the irradiation dose, indicating a proportional increase in defect concentration during irradiation. The DLTS spectra reveal several thermally unstable and stable defects that exhibit similarities at low irradiation doses.Notably, after irradiating at the higher dose of 1000 kGy, a new stable defect labeled as R_(2)(Ec-0.51 eV) appeared after annealing at 800 K. Furthermore, the impact of irradiation-induced defects on SiC junction barrier Schottky diodes is discussed. It is observed that high-dose electron irradiation converts SiC n-epilayers to semi-insulating layers. However, subjecting the samples to a temperature of only 800 K results in a significant reduction in resistance due to the annealing out of unstable defects.
文摘无论氢在电子器件内部以何种形式(H2分子、H原子或H+离子)存在,均会对电子器件电离损伤产生作用,进而影响器件的抗辐照能力。本文深入研究了氢气和空气气氛条件下1 Me V电子辐照栅控横向PNP(GLPNP)型双极晶体管的辐射损伤缺陷演化行为。利用Keithley 4200SCS半导体参数测试仪对不同气氛下辐照过程中晶体管进行在线原位电性能参数测试,研究晶体管电性能退化与电子辐照注量和氢气深度之间的关系;基于栅扫技术(GS)和深能级瞬态谱技术(DLTS),研究双极晶体管中氢诱导电离损伤缺陷演化的基本特征。研究表明,与空气气氛相比,氢气气氛下电子辐照导致GLPNP的基极电流增加显著,而集电极电流明显降低,产生更多的氧化物电荷和界面态,这些现象均说明氢气加剧双极晶体管的电离辐射损伤。