Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sa...Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.展开更多
Based on the Kirchhoff approximation and the theoretical analysis of the random light fields, the speckle intensity distributions in the extremely deep Fresnel diffraction region are simulated. The fractal property of...Based on the Kirchhoff approximation and the theoretical analysis of the random light fields, the speckle intensity distributions in the extremely deep Fresnel diffraction region are simulated. The fractal property of the speckles as well as the relation between the speckle intensity distribution and the corresponding random surface is investigated. We design a microscope system to detect experimentally the speckles in the extremely deep Fresnel diffraction region, and the experimental results prove the conclusions drawn from our simulations.展开更多
We report a heptad vortex array structure in the wave fields in an extremely deep Fresnel diffraction region by asymmetrical subwavelength holes in a metal film illuminated with linearly polarized light. A Mach Zehnde...We report a heptad vortex array structure in the wave fields in an extremely deep Fresnel diffraction region by asymmetrical subwavelength holes in a metal film illuminated with linearly polarized light. A Mach Zehnder interferometer with a microscopic objective is used to record the wave fields at different distance& and the phase maps are extracted by Fourier transform of the interference intensities. We study the evolutions of the heptad vortex array with distance from the sample to the object plane. To explain the formations and the evolutions of the vortex array, we calculate the diffracted wave fields with Kirchhoff's diffraction theory. The calculations are basically consistent with the experimental results, and the properties of the heptad vortex array structure are reasonably explained.展开更多
After the three-dimensional self-affine fractal random surface simulation, we use the optical scattering theory to calculate the deep Fresnel region speckle(DFRS) under consideration of the more strict shadowing effec...After the three-dimensional self-affine fractal random surface simulation, we use the optical scattering theory to calculate the deep Fresnel region speckle(DFRS) under consideration of the more strict shadowing effect. The evolution of DFRS with the scattering distance and the intensity probability distribution are studied. It is found that the morphology of the scatterer has an antisymmetric relationship with the intensity distribution of DFRS, and the effect of micro-lenses on the scattering surface causes the intensity probability distribution of DFRS to deviate from the Gaussian speckle in the high light intensity area.展开更多
基金The National Natural Science Foundation of China under contract No.42202157the China National Offshore Oil Corporation Co.,Ltd.Major Production and Scientific Research Program under contract No.2019KT-SC-22。
文摘Dissolution mechanism and favorable reservoir distribution prediction are the key problems restricting oil and gas exploration in deep-buried layers.In this paper,the Enping Formation and Zhuhai Formation in Baiyun Sag of South China Sea was taken as a target.Based on the thin section,scanning electron microscopy,X-ray diffraction,porosity/permeability measurement,and mercury injection,influencing factors of dissolution were examined,and a dissolution model was established.Further,high-quality reservoirs were predicted temporally and spatially.The results show that dissolved pores constituted the main space of the Paleogene sandstone reservoir.Dissolution primarily occurred in the coarse-and medium-grained sandstones in the subaerial and subaqueous distributary channels,while dissolution was limited in fine-grained sandstones and inequigranular sandstones.The main dissolved minerals were feldspar,tuffaceous matrix,and diagenetic cement.Kaolinization of feldspar and illitization of kaolinite are the main dissolution pathways,but they occur at various depths and temperatures with different geothermal gradients.Dissolution is controlled by four factors,in terms of depositional facies,source rock evolution,overpressure,and fault activities,which co-acted at the period of 23.8–13.8 Ma,and resulted into strong dissolution.Additionally,based on these factors,high-quality reservoirs of the Enping and Zhuhai formations are predicted in the northern slope,southwestern step zone,and Liuhua uplift in the Baiyun Sag.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974122 and 10874105)the Science and Technology Research Project of Shandong Province of China(Grant No.2009GG10001005)+1 种基金the Shandong Distinguished Middleaged and Young Scientist Encourage and Reward Foundation,China(Grant Nos.2007BS04031 and BS2009SF020)the State Key Development Program for Basic Research of China(Grant No.2006CB806003)
文摘Based on the Kirchhoff approximation and the theoretical analysis of the random light fields, the speckle intensity distributions in the extremely deep Fresnel diffraction region are simulated. The fractal property of the speckles as well as the relation between the speckle intensity distribution and the corresponding random surface is investigated. We design a microscope system to detect experimentally the speckles in the extremely deep Fresnel diffraction region, and the experimental results prove the conclusions drawn from our simulations.
基金Supported by the National Natural Science Foundation of China under Grant No 11574185the Science and Technology Development Program of Shandong Province under Grant No 2009GG10001005
文摘We report a heptad vortex array structure in the wave fields in an extremely deep Fresnel diffraction region by asymmetrical subwavelength holes in a metal film illuminated with linearly polarized light. A Mach Zehnder interferometer with a microscopic objective is used to record the wave fields at different distance& and the phase maps are extracted by Fourier transform of the interference intensities. We study the evolutions of the heptad vortex array with distance from the sample to the object plane. To explain the formations and the evolutions of the vortex array, we calculate the diffracted wave fields with Kirchhoff's diffraction theory. The calculations are basically consistent with the experimental results, and the properties of the heptad vortex array structure are reasonably explained.
文摘After the three-dimensional self-affine fractal random surface simulation, we use the optical scattering theory to calculate the deep Fresnel region speckle(DFRS) under consideration of the more strict shadowing effect. The evolution of DFRS with the scattering distance and the intensity probability distribution are studied. It is found that the morphology of the scatterer has an antisymmetric relationship with the intensity distribution of DFRS, and the effect of micro-lenses on the scattering surface causes the intensity probability distribution of DFRS to deviate from the Gaussian speckle in the high light intensity area.