The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not...The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.展开更多
Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined...Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed.展开更多
In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupli...In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.展开更多
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t...Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.展开更多
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ...Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.展开更多
By the generalized Kelvin creep model,rheological characteristics of deep softrock and long-term mechanical behaviors of support structures were simulated.Mechanicaldeformation characteristics of support structures un...By the generalized Kelvin creep model,rheological characteristics of deep softrock and long-term mechanical behaviors of support structures were simulated.Mechanicaldeformation characteristics of support structures under different lining circumstanceswere also analyzed on the basis of deducing the relationship between the generalizedKelvin creep model and implicit creep equations in ANSYS FEM software.The resultsshow that high stress of deep tunnels is the main factor in creep damage;the surroundingrock's deformation binding effect due to lining increases as the thickness increases but theeffect becomes very weak when it increases to a certain value;contact pressure on thelining decreases as its thickness decreases.展开更多
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ...Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.展开更多
Geomechanics in deep mines becomes more complex and structural support in soft rock can be very difficult.Highly stressed soft rock subject to expansion deformation is particularly difficult to control.The Tiefa Coal ...Geomechanics in deep mines becomes more complex and structural support in soft rock can be very difficult.Highly stressed soft rock subject to expansion deformation is particularly difficult to control.The Tiefa Coal Industry Group Daqiang Coal Mine is used as an example.A ventilation shaft,à550 horsehead,is located in tertiary soft rock.Analysis of the reasons for deformation shows an intumescent rock,which is easily damaged.Field observations and theoretical analysis led to a design capable of stabilizing the rock.A combination of spray,anchors,anchor bolts,and soft corner coupled truss supports allowed the deformation to be controlled.This provides a model for similar designs when support of a horsehead roadway is required.展开更多
Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characterist...Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.展开更多
A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure...A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure. The results show that the water absorbing capacity of rock with a certain pressure is larger than that of rock without pressure: however, the relationship between the water absorbing percentage and the time can be expressed by w(t) = a(l - e^-bt). In hi-logarithmic coordinates, the hydrophilic relationship with time in tests with pressure could be characterized by linearity, while they present concave or convex in tests without pressure. Based on the hypothesis that each influential factor is irrelevant and they have a linear correlation with the water absorbing capacity, we calculated the weight coefficient of each factor according to experimental results under different conditions. The calculations demonstrate that the effec- tive porosity, content of smectite and kaolinite are all positively correlated with the water absorption capacity of rock; meanwhile, the fractal dimension of the effective pores presents a negative correlation with the water absorption capacity of rock. The water absorption capacity with pressure increases with increasing illite, chlorite and chlorite/smectite formation and a decrease in illite/smectite formation and the fractal dimension of the effective pores, while it is opposite in tests without pressure. The weight coefficient of smectite is smallest among positive factors, and the fractal dimension of the effective pores is the smallest amongst the negative factors.展开更多
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed wit...Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~展开更多
In view of failure phenomena with nonlinear large deformation including extensive damage,whole section destruction in short time,high rate of repair,most destruction forms occurred in the tertiary roadway of soft rock...In view of failure phenomena with nonlinear large deformation including extensive damage,whole section destruction in short time,high rate of repair,most destruction forms occurred in the tertiary roadway of soft rocks engineering in Liuhai mine,according to the methods of geological survey,theoretical analysis,numerical calculation and in-situ test,the composite failure mechanism of molecular expansion,tectonic stress,gravity stress and engineering deviatoric stress,faults and random joint in this area is analyzed deeply,then an coupling support of double-layer-truss is proposed.The research results show that the first wave of deformation energy was released by bolt-mesh-cable fixed into the roof,floor and two sides of the roadway.While the second wave of deformation energy was released through the interface function between double-layer-truss and the surrounding rock.The double-layer-truss that characterized by high strength,good integrity can absorb high deformation energy of surrounding rocks,which led to the uniform distribution of the stress.Engineering practice shows this technology has been successfully applied to control the deformation failure of the tertiary extremely soft rock roadway.展开更多
In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang C...In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions.展开更多
Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i...Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2021YFB2600800)the National Key Research and Development 451 Program of China (Grant No.2021YFC3100803)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No.2016ZT06N340).
文摘The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.
基金financial assistance provided by the National Natural Science Foundation of China (No. 51404262)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)the Basal Research Fund of China Central College (No. 2015QNA60)
文摘Analyzing the mineral composition, mechanical properties and ground stress testing in surrounding rock,the study investigated the failure mechanism of deep soft rock roadway with high stress. The boltgrouting combined support system was proposed to prevent such failures. By means of FLAC3D numerical simulation and similar material simulation, the feasibility of the support design and the effectiveness of support parameters were discussed. According to the monitoring the surface and deep displacement in surrounding rock as well as bolt axial load, this paper analyzed the deformation of surrounding rock and the stress condition of the support structure. The monitor results were used to optimize the proposed support scheme. The results of field monitors demonstrate that the bolt-grouting combined support technology could improve the surround rock strength and bearing capacity of support structure, which controlled the great deformation failure and rheological property effectively in deep soft rock roadway with high stress. As a result, the long term stability and safety are guaranteed.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074296,52004286)the China Postdoctoral Science Foundation(Grant Nos.2020T130701,2019M650895).
文摘In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful.
基金Supported by the Fundamental Research Funds for the Central Universities of China (2009QL05)
文摘Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.
基金provided by the National Natural Science Foundation of China(Nos.51322401,51309222,51323004,51579239 and 51574223)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2014KF03)+2 种基金the State Key Laboratory for GeoMechanics Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and MitigationDeep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1305)China Postdoctoral Science Foundation(Nos.2014M551700and 2013M531424)
文摘Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.
基金Supported by Open Foundation Project of Education Ministry Key Laboratory about Mine Disaster Prevention and Control(MDPC0811)Research Project"Spring Bud Plan"of Shandong University of Science and TechnologyShandong University of Science and Technology Innovation Fund Grant(yca2008-04-01)
文摘By the generalized Kelvin creep model,rheological characteristics of deep softrock and long-term mechanical behaviors of support structures were simulated.Mechanicaldeformation characteristics of support structures under different lining circumstanceswere also analyzed on the basis of deducing the relationship between the generalizedKelvin creep model and implicit creep equations in ANSYS FEM software.The resultsshow that high stress of deep tunnels is the main factor in creep damage;the surroundingrock's deformation binding effect due to lining increases as the thickness increases but theeffect becomes very weak when it increases to a certain value;contact pressure on thelining decreases as its thickness decreases.
基金partially supported by program for the New Century Excellent Talents in University (No. NCET-08-0833)the National Natural Science Foundation of China (No. 41040027)the Special Fund of Basic Research and Operating Expenses of China University of Mining and Technology, Beijing
文摘Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock.
基金supported by the National Basic Research Program of China (No.2006CB202200)the Ministry of Education Innovation Team Project (No. IRT0656)+2 种基金the Central University Basic Research Special Fund Operating Expense (No.2009QL06)the New Century Excellent Talents Support Projects of Ministry of Education (No.NCET-08-0833)the National Natural Science Foundation of China (No.41040027)
文摘Geomechanics in deep mines becomes more complex and structural support in soft rock can be very difficult.Highly stressed soft rock subject to expansion deformation is particularly difficult to control.The Tiefa Coal Industry Group Daqiang Coal Mine is used as an example.A ventilation shaft,à550 horsehead,is located in tertiary soft rock.Analysis of the reasons for deformation shows an intumescent rock,which is easily damaged.Field observations and theoretical analysis led to a design capable of stabilizing the rock.A combination of spray,anchors,anchor bolts,and soft corner coupled truss supports allowed the deformation to be controlled.This provides a model for similar designs when support of a horsehead roadway is required.
基金financial assistance provided by the National Natural Science Foundation of China (Nos. 51322401, 51404262, 51579239, 51574223)Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals (Shandong University of Science and Technology) of China (No. CDPM2014KF03)+1 种基金China Postdoctoral Science Foundation (Nos. 2015M580493, 2014M551700, 2013M531424)the Natural Science Foundation of Jiangsu Province of China (No. BK20140213)
文摘Due to high ground stress and mining disturbance, the deformation and failure of deep soft rock roadway is serious, and invalidation of the anchor net-anchor cable supporting structure occurs. The failure characteristics of roadways revealed with the help of the ground pressure monitoring. Theoretical analysis was adopted to analyze the influence of mining disturbance on stress distribution in surrounding rock,and the change of stress was also calculated. Considering the change of stress in surrounding rock of bottom extraction roadway, the displacement, plastic zone and distribution law of principal stress difference under different support schemes were studied by means of FLAC3D. The supporting scheme of U-shaped steel was proposed for bottom extraction roadway that underwent mining disturbance. We carried out a similarity model test to verify the effect of support in dynamic pressure. Monitoring results demonstrated the change rules of deformation and stress of surrounding rock in different supporting schemes. The supporting scheme of U-shaped steel had an effective control on deformation of surrounding rock. The scheme was successfully applied in underground engineering practice, and achieved good technical and economic benefits.
文摘A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure. The results show that the water absorbing capacity of rock with a certain pressure is larger than that of rock without pressure: however, the relationship between the water absorbing percentage and the time can be expressed by w(t) = a(l - e^-bt). In hi-logarithmic coordinates, the hydrophilic relationship with time in tests with pressure could be characterized by linearity, while they present concave or convex in tests without pressure. Based on the hypothesis that each influential factor is irrelevant and they have a linear correlation with the water absorbing capacity, we calculated the weight coefficient of each factor according to experimental results under different conditions. The calculations demonstrate that the effec- tive porosity, content of smectite and kaolinite are all positively correlated with the water absorption capacity of rock; meanwhile, the fractal dimension of the effective pores presents a negative correlation with the water absorption capacity of rock. The water absorption capacity with pressure increases with increasing illite, chlorite and chlorite/smectite formation and a decrease in illite/smectite formation and the fractal dimension of the effective pores, while it is opposite in tests without pressure. The weight coefficient of smectite is smallest among positive factors, and the fractal dimension of the effective pores is the smallest amongst the negative factors.
基金financial supports from the National Natural Science Foundation of China under Grant Nos.51009132,10972221,10672167 and 41172288the National Basic Research Program of China under Grant No. 2014CB046902
文摘Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~
基金supported by program for the National Natural Science Foundation of China (No.51304210)the Specialized Research Foundation for the Doctoral Program of Higher Education by the Ministry of Education (No.20120023120014)
文摘In view of failure phenomena with nonlinear large deformation including extensive damage,whole section destruction in short time,high rate of repair,most destruction forms occurred in the tertiary roadway of soft rocks engineering in Liuhai mine,according to the methods of geological survey,theoretical analysis,numerical calculation and in-situ test,the composite failure mechanism of molecular expansion,tectonic stress,gravity stress and engineering deviatoric stress,faults and random joint in this area is analyzed deeply,then an coupling support of double-layer-truss is proposed.The research results show that the first wave of deformation energy was released by bolt-mesh-cable fixed into the roof,floor and two sides of the roadway.While the second wave of deformation energy was released through the interface function between double-layer-truss and the surrounding rock.The double-layer-truss that characterized by high strength,good integrity can absorb high deformation energy of surrounding rocks,which led to the uniform distribution of the stress.Engineering practice shows this technology has been successfully applied to control the deformation failure of the tertiary extremely soft rock roadway.
文摘In order to solve the problem of asymmetric large deformation of high-stress soft rock crossing roadway under complex geological conditions in deep mines, taking the 2# total return airway of 76.2# section of Wuyang Coal Mine as the engineering background, the causes of asymmetric deformation and failure of soft rock crossing roadway in deep mines were summarized and analyzed by means of field investigation, theoretical analysis and numerical simulation, and the asymmetric high-efficiency support technology with large row spacing was studied. The results show that the lithology of roadway strata is the main cause of asymmetric deformation and failure of roadway. The shape change of roadway is not the main influencing factor of asymmetric deformation of roadway, but for the control of roadway surrounding rock, the straight wall semi-circular arch roadway is better than the rectangular roadway. The field industrial test shows that after adopting the new support design scheme, the displacement of the roof and floor of the roadway is reduced by 86.39% compared with the original support design scheme, and the displacement of the two sides of the roadway is reduced by 86.05% compared with the original support design scheme, which can ensure the normal and safe production of the roadway during the service period, and provide reference for the support design of other similar geological conditions.
文摘Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.