A series of room-temperature ternary deep eutectic solvents (TDESs) were prepared from imidazolium halides, zinc halides and amides. The [BMIM]Cl-ZnCl2-acetamide (1:1:1) system shows the lowest freezing point (...A series of room-temperature ternary deep eutectic solvents (TDESs) were prepared from imidazolium halides, zinc halides and amides. The [BMIM]Cl-ZnCl2-acetamide (1:1:1) system shows the lowest freezing point (-60℃) and lowest density in the series. The viscosity and conductivity of TDESs have an exponential relationship with temperature and can be fitted by Arrhenius equation.展开更多
Type IV deep eutectic solvent(DES) involves the formation of metal-based eutectics from metal salts or metal salt hydrate in combination with various hydrogen-bond donors(HBDs) such as urea, ethylene glycol or ace...Type IV deep eutectic solvent(DES) involves the formation of metal-based eutectics from metal salts or metal salt hydrate in combination with various hydrogen-bond donors(HBDs) such as urea, ethylene glycol or acetamide. In current study, two distinguished approaches were used to synthesize potential DESs, given as the direct heating and the evaporating methods. Successful synthesized DESs were subjected for physical properties characterization by Fourier Transform Infrared(FTIR) Spectroscopy, thermal stability, viscosity,and conductivity analyses. Five novel manganese(II)-based DESs were successfully synthesized as reported in this study. Data obtained indicated that the Mn Cl2á4H2Oáacetamide DES exhibits the lowest freezing point(27.5℃), highest thermal stability(193℃ point of dehydration), lowest viscosity(E = 112.8cP) and the highest conductivity(0.12723 mS/cm). The findings obtained reveal the characteristics, nature or features of synthesized DESs as potential industrial solvents.展开更多
基金the Fundamental Research Funds for the Central Universities(No.13D110520 and 13D310508)for funding this work
文摘A series of room-temperature ternary deep eutectic solvents (TDESs) were prepared from imidazolium halides, zinc halides and amides. The [BMIM]Cl-ZnCl2-acetamide (1:1:1) system shows the lowest freezing point (-60℃) and lowest density in the series. The viscosity and conductivity of TDESs have an exponential relationship with temperature and can be fitted by Arrhenius equation.
文摘Type IV deep eutectic solvent(DES) involves the formation of metal-based eutectics from metal salts or metal salt hydrate in combination with various hydrogen-bond donors(HBDs) such as urea, ethylene glycol or acetamide. In current study, two distinguished approaches were used to synthesize potential DESs, given as the direct heating and the evaporating methods. Successful synthesized DESs were subjected for physical properties characterization by Fourier Transform Infrared(FTIR) Spectroscopy, thermal stability, viscosity,and conductivity analyses. Five novel manganese(II)-based DESs were successfully synthesized as reported in this study. Data obtained indicated that the Mn Cl2á4H2Oáacetamide DES exhibits the lowest freezing point(27.5℃), highest thermal stability(193℃ point of dehydration), lowest viscosity(E = 112.8cP) and the highest conductivity(0.12723 mS/cm). The findings obtained reveal the characteristics, nature or features of synthesized DESs as potential industrial solvents.