Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect...Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coup...The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coupled with pressure/tension(P/T)axis mechanism and geological structure is proposed to invert the in situ stress in the Duoxiongla tunnel in Tibet.In the process of TBM tunnel excavation,3887 groups of microseismic events were collected by means of microseismic monitoring technology.By studying the temporal and spatial distribution of 3887 groups of microseismic events,42 groups of microseismic data were selected for in situ stress inversion.Then the focal mechanisms of 42 groups of microseisms were inverted.Combined with the analysis of the previous geological survey,the inversion results of the in situ stress were analyzed.According to the focal mechanism of the tunnel area,the linear in situ stress inversion method was used to invert the in situ stress in the source area.Finally,according to the PTGS(pressure/tension axis mechanism and geological structure)comprehensive judgment method proposed in this paper,the in situ stress of the tunnel microseismic region was determined.The results show that there are mainly three groups of fissures and joint surfaces in the tunnel area,and the in situ stress is dominated by the horizontrun tectonic stress;the main driving force of the rupture surface in the excavation process of Duoxiongla tunnel is the horizontal tectonic stress;the distribution of the maximum and minimum principal stress obtained by the inversion is consistent with the distribution of the P/T axis;combined with the linear in situ stress inversion method and the comprehensive judgment of PTGS,the azimuth and dip angles of the three principal stresses are finally determined as N90.71°E,4.06°,N5.35°W,3.06°,and N8.10W,85.32°,respectively.The study verifies the feasibility of microseismic inversion of in situ stress.展开更多
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta...Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.展开更多
The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of...The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths.It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock.It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma-tion of the surrounding rock by a pre-stress and time-space effect of the anchor support.The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.展开更多
To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specime...To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes,and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera.The loading rates were 0.02,0.10,and 0.50 MPa/s.The test results show that the rockburst process of hole sidewall experienced calm period,pellet ejection period,rock fragment exfoliation period and finally formed the V-shaped notch.The rockburst has a time lag and vertical stress is high when the rockburst occurs.The vertical stress at the initial failure of the hole sidewall increases with loading rate.During the same period after initial failure,the rockburst severity of hole sidewalls increased significantly with increasing loading rate.When the vertical stress is constant and maintains a high stress level,the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate.With increasing loading rate,the quality of rock fragments produced by the rockburst decreases,and the fractal dimension of rock fragments increases.展开更多
The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constit...The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.展开更多
The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunne...The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunnels and investigated the failure area,deformation process of the surrounding rock mass,stress change inside the surrounding rock mass,velocity of the failed rock,and the kinetic energy of the failure.The failure type of the surrounding rock mass can thus be determined.The results showed that the intensity of rockburst increases as rock quality designation(RQD)decreases,while the deformation rate of the surrounding rock mass frst increases and then decreases.The deformation rate exhibits a turning point between RQD=50 and 70,below which the deformation rate of the surrounding rock mass gradually decreases,ultimately ceasing to be a rockburst.Rockburst always occurs perpendicular to the direction of the joint.Whenσ_(x)=σ_(y),as the joint inclination angle changes from 45°to 90°,the intensity of a rockburst frst decreases(from 45°to 60°),and then increases(from 60°to 90°).When combined with the evolution law of stress and strain energy,the rockburst process can be divided into four stages.展开更多
Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different roc...Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and anal...Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions.展开更多
To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the suffic...To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical.展开更多
Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During t...Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.展开更多
To investigate the longitudinal deformation profile(LDP)of a deep tunnel in non-hydrostatic condition,an analytical model is proposed in our study.In this model,the problem is considered as a superposition of two part...To investigate the longitudinal deformation profile(LDP)of a deep tunnel in non-hydrostatic condition,an analytical model is proposed in our study.In this model,the problem is considered as a superposition of two partial models,and the displacement field of the second partial model is the same as that of the concerned problem.Therefore,the problem can be solved by a model with simple boundary conditions.We obtain the solutions for the stress and displacement fields of an infinite body caused by arbitrary surface tractions on the boundary of the coming tunnel(zone inside the tunnel before excavation)by integrating the extended Kelvin solution over the boundary.The obtained stress solution is used to solve the specific surface tractions,which can satisfy the boundary conditions of the second partial model,on the boundary of the coming tunnel in an infinite body.Then,the specific surface tractions are substituted into the obtained displacement solution to solve the displacement on the wall and face of the tunnel.Therefore,the LDP can also be calculated.The proposed solution is verified by both numerical simulation and the LDP functions recommended by other researchers.The major advantage of our analytical model is that it can consider the effects of the axial and horizontal lateral pressure coefficients.It is revealed that the horizontal lateral pressure coefficient majorly affects the LDP behind the tunnel face,while the axial lateral pressure coefficient dominates the LDP ahead of the tunnel face.Furthermore,the deformation characteristics of the LDPs ahead of the face and the unexcavated core are investigated.The axial displacements of the excavation face can be used to predict the crown displacements ahead of the face.展开更多
To investigate the zonal disintegration form of the surrounding rock in deep tunnels,model tests were performed in the simulation set-up of fracture mechanism and support technology of surrounding rock in deep tunnel....To investigate the zonal disintegration form of the surrounding rock in deep tunnels,model tests were performed in the simulation set-up of fracture mechanism and support technology of surrounding rock in deep tunnel.The test results illustrate that the first fracture of the surrounding rock occurred at the intersection of the tunnel floor and the side wall.After more serious destruction,the side wall and the vault were destroyed.Although the fracture width of each surrounding rock mass was distinct,they were relatively uniform with a nearly continuous fracture form.The width of the split bodies of the model tunnels(i.e.,the annular zonal disintegration area)developed with an increasing load.It was observed from the fitting curves of the data that all radial strain values of the surrounding rock were more symmetric with a smooth fitting curve,and the maximum value occurred near the tunnel wall before reducing instantly.The circumferential strain values were dispersed and the data were inconsistent with the fitting curve,which caused some data to be unreliable.The phenomenon of zonal disintegration was primarily caused by radial tension strain of the surrounding rock.This phenomenon would not extend indefinitely as the rupture range would be limited to a certain extent,because the maximum radial tension strain of the surrounding rock was less than the limiting value.展开更多
Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of wea...Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No 10 of Hebi Coal Mining Administration.展开更多
The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to t...The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to the heterogeneity and viscous damping of rock media.Therefore,the study on attenuation characteristics of MS signals in underground engineering has practical significance for the accurately estimation of radiated seismic energy.Based on a pendulum impact test facility and MS monitoring system,an in situ investigation was carried out to explore attenuation characteristics at a deep tunnel.The results show that the seismic energy and peak particle velocity(PPV)attenuation are exponentially related to the propagation distance.The attenuation coefficient of energy is larger than that of PPV.With the increase in the input impact-energy,the seismic energy attenuation coefficient decreases as a power function.An empirical relationship between energy attenuation coefficient and wave impedance of rock mass was established in this scenario.Moreover,the time-frequency characteristics and energy distribution laws of impact-induced signals were investigated by the continuous wavelet transform(CWT)and wavelet packet analyses,respectively.The dominant frequency of signals decreases gradually as the propagation distance increases.Based on the energy attenuation characteristics,a new method was proposed to calculate the released source energy of MS events in the field.This study can provide an insight into energy attenuation characteristics of seismic waves and references for attenuation correction in seismic energy calculation.展开更多
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed wit...Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~展开更多
基金the support of the National Natural Science Foundation of China(Nos.42207211,42202320 and 42172296)Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2304).
文摘Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金National Postdoctoral Program for Innovative Talent of China,Grant/Award Number:BX20200191National Natural Science Foundation of China,Grant/Award Number:52079068The State Key Laboratory of Hydroscience and Hydraulic Engineering,Grant/Award Number:2021-KY-04。
文摘The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coupled with pressure/tension(P/T)axis mechanism and geological structure is proposed to invert the in situ stress in the Duoxiongla tunnel in Tibet.In the process of TBM tunnel excavation,3887 groups of microseismic events were collected by means of microseismic monitoring technology.By studying the temporal and spatial distribution of 3887 groups of microseismic events,42 groups of microseismic data were selected for in situ stress inversion.Then the focal mechanisms of 42 groups of microseisms were inverted.Combined with the analysis of the previous geological survey,the inversion results of the in situ stress were analyzed.According to the focal mechanism of the tunnel area,the linear in situ stress inversion method was used to invert the in situ stress in the source area.Finally,according to the PTGS(pressure/tension axis mechanism and geological structure)comprehensive judgment method proposed in this paper,the in situ stress of the tunnel microseismic region was determined.The results show that there are mainly three groups of fissures and joint surfaces in the tunnel area,and the in situ stress is dominated by the horizontrun tectonic stress;the main driving force of the rupture surface in the excavation process of Duoxiongla tunnel is the horizontal tectonic stress;the distribution of the maximum and minimum principal stress obtained by the inversion is consistent with the distribution of the P/T axis;combined with the linear in situ stress inversion method and the comprehensive judgment of PTGS,the azimuth and dip angles of the three principal stresses are finally determined as N90.71°E,4.06°,N5.35°W,3.06°,and N8.10W,85.32°,respectively.The study verifies the feasibility of microseismic inversion of in situ stress.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.
基金Projects 2006CB202200 supported by the National Basic Research Program of ChinaNCET07-0800 by the Program for New Century Excellent Talents in Universities
文摘The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths.It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock.It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma-tion of the surrounding rock by a pre-stress and time-space effect of the anchor support.The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel.
基金Projects(11972378,41630642)supported by the National Natural Science Foundation of ChinaProject(2019zzts310)supported by the Fundamental Research Funds for the Central Universities,China。
文摘To investigate the influence of loading rate on rockburst in a circular tunnel under three-dimensional stress conditions,the true-triaxial tests were conducted on 100 mm×100 mm×100 mm cubic sandstone specimens with d50 mm circular perforated holes,and the failure process of hole sidewall was monitored and recorded in real-time by the microcamera.The loading rates were 0.02,0.10,and 0.50 MPa/s.The test results show that the rockburst process of hole sidewall experienced calm period,pellet ejection period,rock fragment exfoliation period and finally formed the V-shaped notch.The rockburst has a time lag and vertical stress is high when the rockburst occurs.The vertical stress at the initial failure of the hole sidewall increases with loading rate.During the same period after initial failure,the rockburst severity of hole sidewalls increased significantly with increasing loading rate.When the vertical stress is constant and maintains a high stress level,the rockburst of hole sidewall under low loading rate is more serious than that under high loading rate.With increasing loading rate,the quality of rock fragments produced by the rockburst decreases,and the fractal dimension of rock fragments increases.
基金Projects 50525825, 50490275 and 90815010 supported by the National Natural Science Foundation of China2009CB724608 by the National BasicResearch Program of China
文摘The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass.
基金sponsored by the National Natural Science Foundation of China(Grants Nos.42177158,11902249 and 11872301)Natural Science Foundation of Shaanxi Province(Shaanxi Province Natural Science Foundation)(Grant No.2022SF412)+1 种基金Education Bureau of Shaanxi Province Scientifc Research Plan Projects of Shaanxi Education Department in China(Grant No.20JS093)The fnancial support provided by this sponsor is greatly appreciated.
文摘The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunnels and investigated the failure area,deformation process of the surrounding rock mass,stress change inside the surrounding rock mass,velocity of the failed rock,and the kinetic energy of the failure.The failure type of the surrounding rock mass can thus be determined.The results showed that the intensity of rockburst increases as rock quality designation(RQD)decreases,while the deformation rate of the surrounding rock mass frst increases and then decreases.The deformation rate exhibits a turning point between RQD=50 and 70,below which the deformation rate of the surrounding rock mass gradually decreases,ultimately ceasing to be a rockburst.Rockburst always occurs perpendicular to the direction of the joint.Whenσ_(x)=σ_(y),as the joint inclination angle changes from 45°to 90°,the intensity of a rockburst frst decreases(from 45°to 60°),and then increases(from 60°to 90°).When combined with the evolution law of stress and strain energy,the rockburst process can be divided into four stages.
基金Projects(51878567,51878568,51578458)supported by the National Natural Science Foundation of ChinaProjects(2017G007-F,2017G007-H)supported by China Railway Science and Technology Research and Development Plan。
文摘Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
基金Projects(41972295,U1965205)supported by the National Natural Science Foundation of ChinaProject(2019ZDK034)supported by the Guangxi Key Laboratory of Disaster Prevention and Engineering Safety,China。
文摘Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions.
基金This project was supported by the Fundamental Research Funds for the Central Universities(WUT:2018IB001)the Fundamental Research Funds for the Central Universities(WUT:2019III130CG).
文摘To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical.
基金Supported by the Fundamental Research Funds for the Central Universities of China (2009QL05)
文摘Roadways excavated in soft rocks at great depth are difficult to be maintained due to large deformation of surrounding rocks, which greatly influences the safety and efficiency of deep resources exploitation. During the excavation process of a deep soft rock tunnel, the rock wall may be compacted due to large deformation. In this paper, the technique to address this problem by a two-dimensional (2D) finite element software, large deformation engineering analyses software (LDEAS 1.0), is provided. By using the Lagrange multiplier method, the kinematic constraint of non-penetrating condition and static constraint of Coulomb friction are introduced to the governing equations in the form of incremental displacement. The numerical example demonstrates the efficiency of this technology. Deformations of a transportation tunnel in inclined soft rock strata at the depth of 1 000 m in Qishan coal mine and a tunnel excavated to three different depths are analyzed by two models, i.e. the additive decomposition model and polar decomposition model. It can be found that the deformation of the transportation tunnel is asymmetrical due to the inclination of rock strata. For extremely soft rock, large deformation can converge only for the additive decomposition model. The deformation of surrounding rocks increases with the increase in the tunnel depth for both models. At the same depth, the deformation calculated by the additive decomposition model is smaller than that by the polar decomposition model.
基金the financial support by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210)the Natural Science Foundation of Beijing,China(Grant No.8202037)。
文摘To investigate the longitudinal deformation profile(LDP)of a deep tunnel in non-hydrostatic condition,an analytical model is proposed in our study.In this model,the problem is considered as a superposition of two partial models,and the displacement field of the second partial model is the same as that of the concerned problem.Therefore,the problem can be solved by a model with simple boundary conditions.We obtain the solutions for the stress and displacement fields of an infinite body caused by arbitrary surface tractions on the boundary of the coming tunnel(zone inside the tunnel before excavation)by integrating the extended Kelvin solution over the boundary.The obtained stress solution is used to solve the specific surface tractions,which can satisfy the boundary conditions of the second partial model,on the boundary of the coming tunnel in an infinite body.Then,the specific surface tractions are substituted into the obtained displacement solution to solve the displacement on the wall and face of the tunnel.Therefore,the LDP can also be calculated.The proposed solution is verified by both numerical simulation and the LDP functions recommended by other researchers.The major advantage of our analytical model is that it can consider the effects of the axial and horizontal lateral pressure coefficients.It is revealed that the horizontal lateral pressure coefficient majorly affects the LDP behind the tunnel face,while the axial lateral pressure coefficient dominates the LDP ahead of the tunnel face.Furthermore,the deformation characteristics of the LDPs ahead of the face and the unexcavated core are investigated.The axial displacements of the excavation face can be used to predict the crown displacements ahead of the face.
基金This work was financially supported by the Chinese National key R&D project(No.2016YFC0801402)the Chinese National Natural Science Foundation Project(No.51627804).
文摘To investigate the zonal disintegration form of the surrounding rock in deep tunnels,model tests were performed in the simulation set-up of fracture mechanism and support technology of surrounding rock in deep tunnel.The test results illustrate that the first fracture of the surrounding rock occurred at the intersection of the tunnel floor and the side wall.After more serious destruction,the side wall and the vault were destroyed.Although the fracture width of each surrounding rock mass was distinct,they were relatively uniform with a nearly continuous fracture form.The width of the split bodies of the model tunnels(i.e.,the annular zonal disintegration area)developed with an increasing load.It was observed from the fitting curves of the data that all radial strain values of the surrounding rock were more symmetric with a smooth fitting curve,and the maximum value occurred near the tunnel wall before reducing instantly.The circumferential strain values were dispersed and the data were inconsistent with the fitting curve,which caused some data to be unreliable.The phenomenon of zonal disintegration was primarily caused by radial tension strain of the surrounding rock.This phenomenon would not extend indefinitely as the rupture range would be limited to a certain extent,because the maximum radial tension strain of the surrounding rock was less than the limiting value.
文摘Based on an engineering background of a deep tunneling in weak rocks, the numerical modeling is used to compare different support schemes of tunnel at great depth in this paper. Focused on the general behaviors of weak rocks at great depth, a tunneling scheme with rock bolting and steel fibre reinforced sprayed concrete is proposed. This scheme is practiced successfully at a deep tunnel in weak rocks in Coal Mine No 10 of Hebi Coal Mining Administration.
基金The support provided by the National Natural Science Foundation of China(Grant Nos.51978541,41941018 and 51839009)is gratefully acknowledged。
文摘The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to the heterogeneity and viscous damping of rock media.Therefore,the study on attenuation characteristics of MS signals in underground engineering has practical significance for the accurately estimation of radiated seismic energy.Based on a pendulum impact test facility and MS monitoring system,an in situ investigation was carried out to explore attenuation characteristics at a deep tunnel.The results show that the seismic energy and peak particle velocity(PPV)attenuation are exponentially related to the propagation distance.The attenuation coefficient of energy is larger than that of PPV.With the increase in the input impact-energy,the seismic energy attenuation coefficient decreases as a power function.An empirical relationship between energy attenuation coefficient and wave impedance of rock mass was established in this scenario.Moreover,the time-frequency characteristics and energy distribution laws of impact-induced signals were investigated by the continuous wavelet transform(CWT)and wavelet packet analyses,respectively.The dominant frequency of signals decreases gradually as the propagation distance increases.Based on the energy attenuation characteristics,a new method was proposed to calculate the released source energy of MS events in the field.This study can provide an insight into energy attenuation characteristics of seismic waves and references for attenuation correction in seismic energy calculation.
基金financial supports from the National Natural Science Foundation of China under Grant Nos.51009132,10972221,10672167 and 41172288the National Basic Research Program of China under Grant No. 2014CB046902
文摘Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~