期刊文献+
共找到6,330篇文章
< 1 2 250 >
每页显示 20 50 100
Automatic depth matching method of well log based on deep reinforcement learning
1
作者 XIONG Wenjun XIAO Lizhi +1 位作者 YUAN Jiangru YUE Wenzheng 《Petroleum Exploration and Development》 SCIE 2024年第3期634-646,共13页
In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep rei... In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep reinforcement learning(MARL)method to automate the depth matching of multi-well logs.This method defines multiple top-down dual sliding windows based on the convolutional neural network(CNN)to extract and capture similar feature sequences on well logs,and it establishes an interaction mechanism between agents and the environment to control the depth matching process.Specifically,the agent selects an action to translate or scale the feature sequence based on the double deep Q-network(DDQN).Through the feedback of the reward signal,it evaluates the effectiveness of each action,aiming to obtain the optimal strategy and improve the accuracy of the matching task.Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells,and reduce manual intervention.In the application to the oil field,a comparative analysis of dynamic time warping(DTW),deep Q-learning network(DQN),and DDQN methods revealed that the DDQN algorithm,with its dual-network evaluation mechanism,significantly improves performance by identifying and aligning more details in the well log feature sequences,thus achieving higher depth matching accuracy. 展开更多
关键词 artificial intelligence machine learning depth matching well log multi-agent deep reinforcement learning convolutional neural network double deep Q-network
下载PDF
Optimizing the Diameter of Plugging Balls in Deep Shale Gas Wells
2
作者 Yi Song Zheyu Hu +5 位作者 Cheng Shen Lan Ren Xingwu Guo Ran Lin Kun Wang Zhiyong Zhao 《Fluid Dynamics & Materials Processing》 EI 2024年第3期609-624,共16页
Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress i... Deep shale gas reserves that have been fractured typically have many relatively close perforation holes. Due to theproximity of each fracture during the formation of the fracture network, there is significant stress interference,which results in uneven fracture propagation. It is common practice to use “balls” to temporarily plug fractureopenings in order to lessen liquid intake and achieve uniform propagation in each cluster. In this study, a diameteroptimization model is introduced for these plugging balls based on a multi-cluster fracture propagationmodel and a perforation dynamic abrasion model. This approach relies on proper consideration of the multiphasenature of the considered problem and the interaction force between the involved fluid and solid phases. Accordingly,it can take into account the behavior of the gradually changing hole diameter due to proppant continuousperforation erosion. Moreover, it can provide useful information about the fluid-dynamic behavior of the consideredsystem before and after plugging. It is shown that when the diameter of the temporary plugging ball is1.2 times that of the perforation hole, the perforation holes of each cluster can be effectively blocked. 展开更多
关键词 deep shale gas fracture propagation fluid mechanics fluid-solid coupling perforation hole abrasion
下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China
3
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity Ordos Basin
下载PDF
Deep sea mineral resources and underground space as well as infrastructure for sustainable and liveable cities
4
作者 Jianguo Wang Heping Xie +1 位作者 Chunfai Leung Xiaozhao Li 《Deep Underground Science and Engineering》 2024年第2期129-130,共2页
This issue covers the papers on two special themes:(1)Mineral resources from deep sea—Science and Engineering and(2)Planning and development of underground space and infrastructure for sustainable and liveable cities.
关键词 UNDERGROUND SUSTAINABLE deep
下载PDF
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建
5
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep Forest算法 PYTHON语言
下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
6
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
下载PDF
Dendritic Deep Learning for Medical Segmentation 被引量:1
7
作者 Zhipeng Liu Zhiming Zhang +3 位作者 Zhenyu Lei Masaaki Omura Rong-Long Wang Shangce Gao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期803-805,共3页
Dear Editor,This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation.In this study,we enhance the segmentation accuracy based on a Se... Dear Editor,This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation.In this study,we enhance the segmentation accuracy based on a SegNet variant including an encoder-decoder structure,an upsampling index,and a deep supervision method.Furthermore,we introduce a dendritic neuron-based convolutional block to enable nonlinear feature mapping,thereby further improving the effectiveness of our approach. 展开更多
关键词 thereby deep enable
下载PDF
240 nm AlGaN-based deep ultraviolet micro-LEDs:size effect versus edge effect 被引量:1
8
作者 Shunpeng Lu Jiangxiao Bai +6 位作者 Hongbo Li Ke Jiang Jianwei Ben Shanli Zhang Zi-Hui Zhang Xiaojuan Sun Dabing Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期55-62,共8页
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef... 240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs. 展开更多
关键词 ALGAN deep ultraviolet micro-LEDs light extraction efficiency size effect edge effect
下载PDF
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
9
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 Artificial intelligence deep learning Capsule endoscopy Image classification Object detection Bleeding risk
下载PDF
Uncertainty Analysis of the Residual Strength of Non-Uniformly Loaded Casingsin Deep Wells
10
作者 Jingpeng Wang Wei Zhang +8 位作者 Zhiwei Lin Lin Song Shiyuan Xie Qi Liu Wei Wang Tao Yang Kai Xu Meng Li Yuqiang Xu 《Fluid Dynamics & Materials Processing》 EI 2023年第1期105-116,共12页
An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non... An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non-uniform load is considered.The distribution of multi-source parameters related to the residual anti extrusion strength and residual anti internal pressure strength of the casing after wear are determined using the probability theory.Considering the technical casing of X101 well in Xinjiang Oilfield as an example,it is shown that the randomness of casing wear depth,formation elastic modulus and formation Poisson’s ratio are the main factors that affect the uncertainty of residual strength.The wider the confidence interval is,the greater the uncertainty range is.Compared with the calculations resulting from the proposed uncertainty analysis method,the residual strength obtained by means of traditional single value calculation method is either larger or smaller,which leads to the conclusion that the residual strength should be considered in terms of a range of probabilities rather than a single value. 展开更多
关键词 Casing wear RANDOMNESS UNCERTAINTY non uniform load deep well
下载PDF
Flood Velocity Prediction Using Deep Learning Approach 被引量:1
11
作者 LUO Shaohua DING Linfang +2 位作者 TEKLE Gebretsadik Mulubirhan BRULAND Oddbjørn FAN Hongchao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期59-73,共15页
Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these resea... Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these research fields,flood velocity plays a crucial role and is an important factor that influences the reliability of the outcomes.Traditional methods rely on physical models for flood simulation and prediction and could generate accurate results but often take a long time.Deep learning technology has recently shown significant potential in the same field,especially in terms of efficiency,helping to overcome the time-consuming associated with traditional methods.This study explores the potential of deep learning models in predicting flood velocity.More specifically,we use a Multi-Layer Perceptron(MLP)model,a specific type of Artificial Neural Networks(ANNs),to predict the velocity in the test area of the Lundesokna River in Norway with diverse terrain conditions.Geographic data and flood velocity simulated based on the physical hydraulic model are used in the study for the pre-training,optimization,and testing of the MLP model.Our experiment indicates that the MLP model has the potential to predict flood velocity in diverse terrain conditions of the river with acceptable accuracy against simulated velocity results but with a significant decrease in training time and testing time.Meanwhile,we discuss the limitations for the improvement in future work. 展开更多
关键词 flood velocity prediction geographic data MLP deep learning
下载PDF
Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19 Monitoring System
12
作者 Mahmoud Ragab Mohammed W.Al-Rabia +1 位作者 Sami Saeed Binyamin Ahmed A.Aldarmahi 《Computers, Materials & Continua》 SCIE EI 2023年第2期2889-2903,共15页
With the increasing and rapid growth rate of COVID-19 cases,the healthcare scheme of several developed countries have reached the point of collapse.An important and critical steps in fighting against COVID-19 is power... With the increasing and rapid growth rate of COVID-19 cases,the healthcare scheme of several developed countries have reached the point of collapse.An important and critical steps in fighting against COVID-19 is powerful screening of diseased patients,in such a way that positive patient can be treated and isolated.A chest radiology image-based diagnosis scheme might have several benefits over traditional approach.The accomplishment of artificial intelligence(AI)based techniques in automated diagnoses in the healthcare sector and rapid increase in COVID-19 cases have demanded the requirement of AI based automated diagnosis and recognition systems.This study develops an Intelligent Firefly Algorithm Deep Transfer Learning Based COVID-19Monitoring System(IFFA-DTLMS).The proposed IFFADTLMSmodelmajorly aims at identifying and categorizing the occurrence of COVID19 on chest radiographs.To attain this,the presented IFFA-DTLMS model primarily applies densely connected networks(DenseNet121)model to generate a collection of feature vectors.In addition,the firefly algorithm(FFA)is applied for the hyper parameter optimization of DenseNet121 model.Moreover,autoencoder-long short term memory(AE-LSTM)model is exploited for the classification and identification of COVID19.For ensuring the enhanced performance of the IFFA-DTLMS model,a wide-ranging experiments were performed and the results are reviewed under distinctive aspects.The experimental value reports the betterment of IFFA-DTLMS model over recent approaches. 展开更多
关键词 COVID-19 artificial intelligence intelligent systems deep learning decision making
下载PDF
Evaluation of hydraulic fracturing of horizontal wells in tight reservoirs based on the deep neural network with physical constraints
13
作者 Hong-Yan Qu Jian-Long Zhang +3 位作者 Fu-Jian Zhou Yan Peng Zhe-Jun Pan Xin-Yao Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1129-1141,共13页
Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fra... Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fracture parameters for the evaluation of the fracturing effects. Field experience and the law of fracture volume conservation were incorporated as physical constraints to improve the prediction accuracy due to small amount of data. A combined neural network was adopted to input both static geological and dynamic fracturing data. The structure of the DNN was optimized and the model was validated through k-fold cross-validation. Results indicate that this DNN model is capable of predicting the fracture parameters accurately with a low relative error of under 10% and good generalization ability. The adoptions of the combined neural network, physical constraints, and k-fold cross-validation improve the model performance. Specifically, the root-mean-square error (RMSE) of the model decreases by 71.9% and 56% respectively with the combined neural network as the input model and the consideration of physical constraints. The mean square error (MRE) of fracture parameters reduces by 75% because the k-fold cross-validation improves the rationality of data set dividing. The model based on the DNN with physical constraints proposed in this study provides foundations for the optimization of fracturing design and improves the efficiency of fracture diagnosis in tight oil and gas reservoirs. 展开更多
关键词 Evaluation of fracturing effects Tight reservoirs Physical constraints deep neural network Horizontal wells Combined neural network
下载PDF
Fusion-Based Deep Learning Model for Automated Forest Fire Detection
14
作者 Mesfer Al Duhayyim Majdy M.Eltahir +5 位作者 Ola Abdelgney Omer Ali Amani Abdulrahman Albraikan Fahd N.Al-Wesabi Anwer Mustafa Hilal Manar Ahmed Hamza Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2023年第10期1355-1371,共17页
Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and thei... Earth resource and environmental monitoring are essential areas that can be used to investigate the environmental conditions and natural resources supporting sustainable policy development,regulatory measures,and their implementation elevating the environment.Large-scale forest fire is considered a major harmful hazard that affects climate change and life over the globe.Therefore,the early identification of forest fires using automated tools is essential to avoid the spread of fire to a large extent.Therefore,this paper focuses on the design of automated forest fire detection using a fusion-based deep learning(AFFD-FDL)model for environmental monitoring.The AFFDFDL technique involves the design of an entropy-based fusion model for feature extraction.The combination of the handcrafted features using histogram of gradients(HOG)with deep features using SqueezeNet and Inception v3 models.Besides,an optimal extreme learning machine(ELM)based classifier is used to identify the existence of fire or not.In order to properly tune the parameters of the ELM model,the oppositional glowworm swarm optimization(OGSO)algorithm is employed and thereby improves the forest fire detection performance.A wide range of simulation analyses takes place on a benchmark dataset and the results are inspected under several aspects.The experimental results highlighted the betterment of the AFFD-FDL technique over the recent state of art techniques. 展开更多
关键词 Environment monitoring remote sensing forest fire detection deep learning machine learning fusion model
下载PDF
Intelligent Deep Learning Enabled Wild Forest Fire Detection System
15
作者 Ahmed S.Almasoud 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1485-1498,共14页
The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfi... The latest advancements in computer vision and deep learning(DL)techniques pave the way to design novel tools for the detection and monitoring of forestfires.In this view,this paper presents an intelligent wild forestfire detec-tion and alarming system using deep learning(IWFFDA-DL)model.The pro-posed IWFFDA-DL technique aims to identify forestfires at earlier stages through integrated sensors.The proposed IWFFDA-DL system includes an Inte-grated sensor system(ISS)combining an array of sensors that acts as the major input source that helps to forecast thefire.Then,the attention based convolution neural network with bidirectional long short term memory(ACNN-BLSTM)model is applied to examine and identify the existence of danger.For hyperpara-meter tuning of the ACNN-BLSTM model,the bacterial foraging optimization(BFO)algorithm is employed and thereby enhances the detection performance.Finally,when thefire is detected,the Global System for Mobiles(GSM)modem transmits messages to the authorities to take required actions.An extensive set of simulations were performed and the results are investigated interms of several aspects.The obtained results highlight the betterment of the IWFFDA-DL techni-que interms of various measures. 展开更多
关键词 Forestfire deep learning intelligent models metaheuristics integrated sensor system hyperparameter tuning
下载PDF
Fire Hawk Optimizer with Deep Learning Enabled Human Activity Recognition
16
作者 Mohammed Alonazi Mrim M.Alnfiai 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3135-3150,共16页
Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for com... Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for computer systems.HCI has accomplished effective incorporation of the human factors and software engineering of computing systems through the methods and concepts of cognitive science.Usability is an aspect of HCI dedicated to guar-anteeing that human–computer communication is,amongst other things,efficient,effective,and sustaining for the user.Simultaneously,Human activity recognition(HAR)aim is to identify actions from a sequence of observations on the activities of subjects and the environmental conditions.The vision-based HAR study is the basis of several applications involving health care,HCI,and video surveillance.This article develops a Fire Hawk Optimizer with Deep Learning Enabled Activ-ity Recognition(FHODL-AR)on HCI driven usability.In the presented FHODL-AR technique,the input images are investigated for the identification of different human activities.For feature extraction,a modified SqueezeNet model is intro-duced by the inclusion of few bypass connections to the SqueezeNet among Fire modules.Besides,the FHO algorithm is utilized as a hyperparameter optimization algorithm,which in turn boosts the classification performance.To detect and cate-gorize different kinds of activities,probabilistic neural network(PNN)classifier is applied.The experimental validation of the FHODL-AR technique is tested using benchmark datasets,and the outcomes reported the improvements of the FHODL-AR technique over other recent approaches. 展开更多
关键词 Activity recognition fire hawks optimizer deep learning USABILITY human computer interaction
下载PDF
Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment
17
作者 Naqqash Dilshad Taimoor Khan JaeSeung Song 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期749-764,共16页
To prevent economic,social,and ecological damage,fire detection and management at an early stage are significant yet challenging.Although computationally complex networks have been developed,attention has been largely... To prevent economic,social,and ecological damage,fire detection and management at an early stage are significant yet challenging.Although computationally complex networks have been developed,attention has been largely focused on improving accuracy,rather than focusing on real-time fire detection.Hence,in this study,the authors present an efficient fire detection framework termed E-FireNet for real-time detection in a complex surveillance environment.The proposed model architecture is inspired by the VGG16 network,with significant modifications including the entire removal of Block-5 and tweaking of the convolutional layers of Block-4.This results in higher performance with a reduced number of parameters and inference time.Moreover,smaller convolutional kernels are utilized,which are particularly designed to obtain the optimal details from input images,with numerous channels to assist in feature discrimination.In E-FireNet,three steps are involved:preprocessing of collected data,detection of fires using the proposed technique,and,if there is a fire,alarms are generated and transmitted to law enforcement,healthcare,and management departments.Moreover,E-FireNet achieves 0.98 accuracy,1 precision,0.99 recall,and 0.99 F1-score.A comprehensive investigation of various Convolutional Neural Network(CNN)models is conducted using the newly created Fire Surveillance SV-Fire dataset.The empirical results and comparison of numerous parameters establish that the proposed model shows convincing performance in terms of accuracy,model size,and execution time. 展开更多
关键词 deep learning DRONE embedded vision emergency monitoring fire classification fire detection IOT search and rescue
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
18
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Hyperspectral image super resolution using deep internal and self-supervised learning
19
作者 Zhe Liu Xian-Hua Han 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第1期128-141,共14页
By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral... By automatically learning the priors embedded in images with powerful modelling ca-pabilities,deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral(HR-HS)image.With previously collected large-amount of external data,these methods are intuitively realised under the full supervision of the ground-truth data.Thus,the database construction in merging the low-resolution(LR)HS(LR-HS)and HR multispectral(MS)or RGB image research paradigm,commonly named as HSI SR,requires collecting corresponding training triplets:HR-MS(RGB),LR-HS and HR-HS image simultaneously,and often faces dif-ficulties in reality.The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved perfor-mance to the real images captured under diverse environments.To handle the above-mentioned limitations,the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem.The authors advocate that it is possible to train a specific CNN model at test time,called as deep internal learning(DIL),by on-line preparing the training triplet samples from the observed LR-HS/HR-MS(or RGB)images and the down-sampled LR-HS version.However,the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors,which would result in limited reconstruction performance.To solve this problem,the authors further exploit deep self-supervised learning(DSL)by considering the observations as the unlabelled training samples.Specifically,the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation,and then the reconstruction errors of the observations were formulated for measuring the network modelling performance.By consolidating the DIL and DSL into a unified deep framework,the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per obser-vation.To verify the effectiveness of the proposed approach,extensive experiments have been conducted on two benchmark HS datasets,including the CAVE and Harvard datasets,and demonstrate the great performance gain of the proposed method over the state-of-the-art methods. 展开更多
关键词 computer vision deep learning deep neural networks HYPERSPECTRAL image enhancement
下载PDF
Constrained Multi-Objective Optimization With Deep Reinforcement Learning Assisted Operator Selection
20
作者 Fei Ming Wenyin Gong +1 位作者 Ling Wang Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期919-931,共13页
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev... Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs. 展开更多
关键词 Constrained multi-objective optimization deep Qlearning deep reinforcement learning(DRL) evolutionary algorithms evolutionary operator selection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部