随着手机传感器的普遍使用,对人体日常行为动作识别需求越来越多,经典识别方法是利用启发式过程获得人工特征,再用机器学习方法识别动作。最新研究表明,Inception卷积结构在特征自动提取方面表现尤为突出,可避免人工提取特征带来的偏差...随着手机传感器的普遍使用,对人体日常行为动作识别需求越来越多,经典识别方法是利用启发式过程获得人工特征,再用机器学习方法识别动作。最新研究表明,Inception卷积结构在特征自动提取方面表现尤为突出,可避免人工提取特征带来的偏差问题。人体动作由复杂运动序列构成,捕捉该时间序列是动作识别必不可少的。基于此,首先对Inception结构进行了优化,提出了O-Inception结构,并将其与长短期记忆模型(long short term memory,LSTM)进行了融合,进而提出了OI-LSTM(optimization Inception-LSTM)动作识别模型。OI-LSTM模型一方面可以利用O-Inception结构实现对特征的自动提取,另一方面,还可以利用LSTM捕获动作时序,进而提高了动作识别准确率。在WISDM(wireless sensor data mining)和UCI(UC Irvine)两个数据集上进行了扩展性实验,实验结果表明,所提出的OI-LSTM动作识别模型,在WISDM和UCI两个数据集上其准确率比当前最先进的方法分别提高了约4%和1%。实验还证明,此模型拥有很强的容错性和实时性。展开更多
文摘随着手机传感器的普遍使用,对人体日常行为动作识别需求越来越多,经典识别方法是利用启发式过程获得人工特征,再用机器学习方法识别动作。最新研究表明,Inception卷积结构在特征自动提取方面表现尤为突出,可避免人工提取特征带来的偏差问题。人体动作由复杂运动序列构成,捕捉该时间序列是动作识别必不可少的。基于此,首先对Inception结构进行了优化,提出了O-Inception结构,并将其与长短期记忆模型(long short term memory,LSTM)进行了融合,进而提出了OI-LSTM(optimization Inception-LSTM)动作识别模型。OI-LSTM模型一方面可以利用O-Inception结构实现对特征的自动提取,另一方面,还可以利用LSTM捕获动作时序,进而提高了动作识别准确率。在WISDM(wireless sensor data mining)和UCI(UC Irvine)两个数据集上进行了扩展性实验,实验结果表明,所提出的OI-LSTM动作识别模型,在WISDM和UCI两个数据集上其准确率比当前最先进的方法分别提高了约4%和1%。实验还证明,此模型拥有很强的容错性和实时性。