Musical rhythms are represented as sequences of symbols. The sequences may be composed of binary symbols denoting either silent or monophonic sounded pulses, or ternary symbols denoting silent pulses and two types of ...Musical rhythms are represented as sequences of symbols. The sequences may be composed of binary symbols denoting either silent or monophonic sounded pulses, or ternary symbols denoting silent pulses and two types of sounded pulses made up of low-pitched (dum) and high-pitched (tak) sounds. Experiments are described that compare the effectiveness of the many-to-many minimum-weight matching between two sequences to serve as a measure of similarity that correlates well with human judgements of rhythm similarity. This measure is also compared to the often used edit distance and to the one-to-one minimum-weight matching. New results are reported from experiments performed with three widely different datasets of real- world and artificially generated musical rhythms (including Afro-Cuban rhythms), and compared with results previously reported with a dataset of Middle Eastern dum-tak rhythms.展开更多
In object detection,spatial knowledge assisted systems are effective.Object detection is a main and challenging issue to analyze object-related information.Several existing object detection techniques were developed t...In object detection,spatial knowledge assisted systems are effective.Object detection is a main and challenging issue to analyze object-related information.Several existing object detection techniques were developed to consider the object detection problem as a classification problem to perform feature selection and classification.But these techniques still face,less computational efficiency and high time consumption.This paper resolves the above limitations using the Fuzzy Tversky index Ontology-based Multi-Layer Perception method which improves the accuracy of object detection with minimum time.The proposed method uses a multilayer forfinding the similarity score.A fuzzy membership function is used to validate the score for predicting the burned and non-burned zone.Experimental assessment is performed with different factors such as classification rate,time complexity,error rate,space complexity,and precision by using the forestfire dataset.The results show that this novel technique can help to improve the classification rate and reduce the time and space complexity as well as error rate than the conventional methods.展开更多
针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。...针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。算法利用行人在室内走廊环境下的众包轨迹,并基于突出性路口结构,从位置、航向、影响范围以及WiFi特征指纹等方面构建多维信息感知地标库。给出的自适应地标检测算法,结合航向约束轨迹相似度匹配模型,更新行人位置和航向,避免了本地化匹配过程对空间位置的强依赖性。实验结果表明,相比于其他地标构建及匹配算法,所提算法更好地反映了行人活动与室内空间结构的相关性,且在未知起始位置时,算法能够快速收敛并提供较高的定位精度,对于室内行人连续定位具有较高的应用价值。展开更多
针对当前大田环境条件下对害虫进行识别研究的不足,以南方蔬菜重大害虫为研究对象,探索了一种在大田环境下使用黄色诱捕板对蔬菜害虫进行监测计数的方法。在经典图像处理算法基础上,根据害虫监测目标的需要,提出了一种基于结构化随机森...针对当前大田环境条件下对害虫进行识别研究的不足,以南方蔬菜重大害虫为研究对象,探索了一种在大田环境下使用黄色诱捕板对蔬菜害虫进行监测计数的方法。在经典图像处理算法基础上,根据害虫监测目标的需要,提出了一种基于结构化随机森林的害虫图像分割算法和利用不规则结构的特征提取算法,进一步结合背景去除、干扰目标去除和检测模型计数子算法,集成设计了基于视觉感知的蔬菜害虫计数算法(Vegetable pest counting algorithm based on visual perception,VPCA-VP)。使用了现场环境下拍摄的图像进行实验与分析,共识别出蓟马9351只,烟粉虱202只,实蝇23只。经过与人工计数比对得出,本文基于视觉感知的蔬菜害虫计数算法的平均识别正确率为94.89%。其中,蔬菜害虫蓟马的识别正确率为93.19%,烟粉虱的识别正确率为91%,实蝇的识别正确率达到100%。算法达到了较好的测试性能,可以满足害虫快速计数需求,在农田害虫监测中有一定的应用前景。展开更多
Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-u...Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-up attention and the object-driven, top-down attention, whereas the previous attention model has mostly focused on either the bottom-up or top-down attention. By the bottom-up component, the whole scene is segmented into the ground region and the salient regions. Guided by top-down strategy which is achieved by a topological graph, the object regions are separated from the salient regions. The salient regions except the object regions are the barrier regions. In order to estimate the model, a mobile robot platform is developed, on which some experiments are implemented. The experimental results indicate that processing an image with a resolution of 752 × 480 pixels takes less than 200 ms and the object regions are unabridged. The analysis obtained by comparing the proposed model with the existing model demonstrates that the proposed model has some advantages in robot object tracking in terms of speed and efficiency.展开更多
文摘Musical rhythms are represented as sequences of symbols. The sequences may be composed of binary symbols denoting either silent or monophonic sounded pulses, or ternary symbols denoting silent pulses and two types of sounded pulses made up of low-pitched (dum) and high-pitched (tak) sounds. Experiments are described that compare the effectiveness of the many-to-many minimum-weight matching between two sequences to serve as a measure of similarity that correlates well with human judgements of rhythm similarity. This measure is also compared to the often used edit distance and to the one-to-one minimum-weight matching. New results are reported from experiments performed with three widely different datasets of real- world and artificially generated musical rhythms (including Afro-Cuban rhythms), and compared with results previously reported with a dataset of Middle Eastern dum-tak rhythms.
文摘In object detection,spatial knowledge assisted systems are effective.Object detection is a main and challenging issue to analyze object-related information.Several existing object detection techniques were developed to consider the object detection problem as a classification problem to perform feature selection and classification.But these techniques still face,less computational efficiency and high time consumption.This paper resolves the above limitations using the Fuzzy Tversky index Ontology-based Multi-Layer Perception method which improves the accuracy of object detection with minimum time.The proposed method uses a multilayer forfinding the similarity score.A fuzzy membership function is used to validate the score for predicting the burned and non-burned zone.Experimental assessment is performed with different factors such as classification rate,time complexity,error rate,space complexity,and precision by using the forestfire dataset.The results show that this novel technique can help to improve the classification rate and reduce the time and space complexity as well as error rate than the conventional methods.
文摘针对行人航位推算(Pedestrian Dead Reckoning,PDR)室内定位系统的累计误差问题,提出了一种多维信息感知地标匹配的PDR定位算法(PDR positioning algorithm based Multi-imensional Information Perception Landmark Matching,MIPLM)。算法利用行人在室内走廊环境下的众包轨迹,并基于突出性路口结构,从位置、航向、影响范围以及WiFi特征指纹等方面构建多维信息感知地标库。给出的自适应地标检测算法,结合航向约束轨迹相似度匹配模型,更新行人位置和航向,避免了本地化匹配过程对空间位置的强依赖性。实验结果表明,相比于其他地标构建及匹配算法,所提算法更好地反映了行人活动与室内空间结构的相关性,且在未知起始位置时,算法能够快速收敛并提供较高的定位精度,对于室内行人连续定位具有较高的应用价值。
文摘针对当前大田环境条件下对害虫进行识别研究的不足,以南方蔬菜重大害虫为研究对象,探索了一种在大田环境下使用黄色诱捕板对蔬菜害虫进行监测计数的方法。在经典图像处理算法基础上,根据害虫监测目标的需要,提出了一种基于结构化随机森林的害虫图像分割算法和利用不规则结构的特征提取算法,进一步结合背景去除、干扰目标去除和检测模型计数子算法,集成设计了基于视觉感知的蔬菜害虫计数算法(Vegetable pest counting algorithm based on visual perception,VPCA-VP)。使用了现场环境下拍摄的图像进行实验与分析,共识别出蓟马9351只,烟粉虱202只,实蝇23只。经过与人工计数比对得出,本文基于视觉感知的蔬菜害虫计数算法的平均识别正确率为94.89%。其中,蔬菜害虫蓟马的识别正确率为93.19%,烟粉虱的识别正确率为91%,实蝇的识别正确率达到100%。算法达到了较好的测试性能,可以满足害虫快速计数需求,在农田害虫监测中有一定的应用前景。
基金supported by National Basic Research Program of China (973 Program) (No. 2006CB300407)National Natural Science Foundation of China (No. 50775017)
文摘Inspired by human behaviors, a robot object tracking model is proposed on the basis of visual attention mechanism, which is fit for the theory of topological perception. The model integrates the image-driven, bottom-up attention and the object-driven, top-down attention, whereas the previous attention model has mostly focused on either the bottom-up or top-down attention. By the bottom-up component, the whole scene is segmented into the ground region and the salient regions. Guided by top-down strategy which is achieved by a topological graph, the object regions are separated from the salient regions. The salient regions except the object regions are the barrier regions. In order to estimate the model, a mobile robot platform is developed, on which some experiments are implemented. The experimental results indicate that processing an image with a resolution of 752 × 480 pixels takes less than 200 ms and the object regions are unabridged. The analysis obtained by comparing the proposed model with the existing model demonstrates that the proposed model has some advantages in robot object tracking in terms of speed and efficiency.