The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasona...The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.展开更多
This study was carried out to explore the effects of leaching salinity under subsurface drainage and mulched drip irrigation on saline and alkaline land from the year 2012 to 2014 in Xinjiang Region of China.Three sam...This study was carried out to explore the effects of leaching salinity under subsurface drainage and mulched drip irrigation on saline and alkaline land from the year 2012 to 2014 in Xinjiang Region of China.Three sampled points were both set up in the subsurface drainage and ditch drainage areas.Soil samples were obtained at varied depths.Through observing the underground water table under each sampled point and measuring the electrical conductivity(EC)of the soil extracts,the following results were obtained:(1)after draining,the underground water table ranged from 1.6 m to 2.2 m in the ditch drainage area,and ranged from 1.5 m to 2.2 m in the subsurface drainage area.Thus,both irrigations could control underground water table below 1.5 m which is deeper than the main water-absorbing layers of crop root systems;(2)for subsurface drainage,the closer to the pipe,the better to leach salinity;decreased from the initial 13.54-22.95 g/kg to 8.20-11.47 g/kg;(3)compared with the amounts in 2012,soil total salt at each sampling point at depths of 0-200 cm in subsurface drainage area decreased by 42.99%,36.84%and 24.41%respectively in 2014;and in ditch drainage area decreased by 46.85%,38.12%and 30.80%respectively in 2014.The results showed both ditch and subsurface drainage could leach salinity effectively.展开更多
In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simul...In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen(NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.展开更多
A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a sm...A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a small agricultural watershed in Nanjing-Zhenjiang hilly regions to observe the farmland surface runoff and N loss characteristics under the different layouts of field ditch. As the layout density of field ditch increased, the drainage effect was improved, the timing of the runoff peak was advanced, and also the peak flow was augmented. At the same time, both the concentration and accumulated transfer flux of total nitrogen (TN) were improved, and thereinto the accumulated transfer fluxes of TN under D3, D2 and D1 treatments were increased by 1.46, 1.34 and 1.16 times, respectively, than that under CK treatment. However, the accumulated transfer fluxes of nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH4+-N) under D3, D2 and D1 treatments were reduced by 33.9%, 21.4% and 8.6%, and 35.8%, 24.7% and 12.2%, respectively, compared with those under CK treatment. Under CK treatment, the NO3-N and NH4+-N concentrations were more sensitive to rainfall intensity than the TN concentration. There were significant linear relationships between the transfer fluxes of TN, NO3-N and NH^-N and the runoff flux, with the correlation coefficients of 0.942, 0.899 and 0.912, respectively. In addition, this correlation was also influenced by the layout density of field ditch. Therefore, the environmental effect should be taken into account when designing and constructing field ditches. Especially in the regions of severe fertilizer loss, the approaches of properly increasing the drainage area and decreasing the layout density of field ditch could be adopted under the precondition of avoiding crops from waterlogging.展开更多
基金Under the auspices of Major State Basic Research Development Program of China (No.2007CB407307)National Key Technology Research and Development Program of China (No.2006BAC15B01)National Natural Science Foundation of China (No. 40671182)
文摘The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.
基金the National Natural Science Foundation of China(U1203280,U1403183,51269067,41361071,51669029)the National Key Research Project“13th Five-year”(2016YFC0501402,2016YFC0501406)the National Key Research Project“12th Five-year”(2015BAD20B03).
文摘This study was carried out to explore the effects of leaching salinity under subsurface drainage and mulched drip irrigation on saline and alkaline land from the year 2012 to 2014 in Xinjiang Region of China.Three sampled points were both set up in the subsurface drainage and ditch drainage areas.Soil samples were obtained at varied depths.Through observing the underground water table under each sampled point and measuring the electrical conductivity(EC)of the soil extracts,the following results were obtained:(1)after draining,the underground water table ranged from 1.6 m to 2.2 m in the ditch drainage area,and ranged from 1.5 m to 2.2 m in the subsurface drainage area.Thus,both irrigations could control underground water table below 1.5 m which is deeper than the main water-absorbing layers of crop root systems;(2)for subsurface drainage,the closer to the pipe,the better to leach salinity;decreased from the initial 13.54-22.95 g/kg to 8.20-11.47 g/kg;(3)compared with the amounts in 2012,soil total salt at each sampling point at depths of 0-200 cm in subsurface drainage area decreased by 42.99%,36.84%and 24.41%respectively in 2014;and in ditch drainage area decreased by 46.85%,38.12%and 30.80%respectively in 2014.The results showed both ditch and subsurface drainage could leach salinity effectively.
基金Project supported by the National Science Funds for Creative Research Groups of China(Grant No.51421006)the National Major Projects of Water Pollution Control and Management Technology(No.2017ZX07204003)+2 种基金the National Key Plan for Research and Development of China(Grant 2016YFC0502203)the Key Program of National Natural Science Foundation of China(Grant No.91647206)the Qing Lan Project of Jiangsu Province
文摘In this study, a series of ecological porous spur-dikes are arranged in an experiment channel to simulate a real field drainage ditch. The inside and outside flow fields of spur-dikes are determined by numerical simulations and experimental methods. An Ammonia-Nitrogen(NH3-N) degradation evaluation model is built to calculate the pollution removal rate by coupling with the inner flow field of the porous spur-dikes. The variations of the total pollutant removal rate in the channel are discussed in terms of different porosities and gap distances between spur-dikes and inlet flow velocities. It is indicated that a reasonable parameter matching of the porosity and the gap distance with the flow velocity of the ditch can bring about a satisfactory purification efficiency with a small delivery quantity of ecological porous materials.
基金Supported by the National Natural Science Foundation of China(No.50839002)the Doctoral Fund of Ministry of Education of China(No.200802940006)the Public Research Special Fund of Ministry of Agriculture of China(No.200903001-05)
文摘A comparison experiment was performed, by designing one field ditch (D1 treatment), two field ditches (D2 treatment), three field ditches (D3 treatment), and no field ditch (CK treatment), in an upland of a small agricultural watershed in Nanjing-Zhenjiang hilly regions to observe the farmland surface runoff and N loss characteristics under the different layouts of field ditch. As the layout density of field ditch increased, the drainage effect was improved, the timing of the runoff peak was advanced, and also the peak flow was augmented. At the same time, both the concentration and accumulated transfer flux of total nitrogen (TN) were improved, and thereinto the accumulated transfer fluxes of TN under D3, D2 and D1 treatments were increased by 1.46, 1.34 and 1.16 times, respectively, than that under CK treatment. However, the accumulated transfer fluxes of nitrate-nitrogen (NO3-N) and ammonium-nitrogen (NH4+-N) under D3, D2 and D1 treatments were reduced by 33.9%, 21.4% and 8.6%, and 35.8%, 24.7% and 12.2%, respectively, compared with those under CK treatment. Under CK treatment, the NO3-N and NH4+-N concentrations were more sensitive to rainfall intensity than the TN concentration. There were significant linear relationships between the transfer fluxes of TN, NO3-N and NH^-N and the runoff flux, with the correlation coefficients of 0.942, 0.899 and 0.912, respectively. In addition, this correlation was also influenced by the layout density of field ditch. Therefore, the environmental effect should be taken into account when designing and constructing field ditches. Especially in the regions of severe fertilizer loss, the approaches of properly increasing the drainage area and decreasing the layout density of field ditch could be adopted under the precondition of avoiding crops from waterlogging.