When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain...When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.展开更多
A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of...A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of free carbon particles. The evaluation of the distribution spectrum of particles in the system is obtained. The simulation result is consistent with the experimental curve.展开更多
A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculatio...A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code, which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks. The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.展开更多
Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and low...Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.展开更多
Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the resul...Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.展开更多
A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to exten...A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.展开更多
The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and ...The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.展开更多
The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail...The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail energy spectra for the reflected particles and their angular distribution for different incident angles. It shows that the reflected particle energy spectra can be approximately described by an analytical formula for the whole energy range, all the incident angles and different ion- target combination studied here. The reflected particle energy vs its average reflection angle to the surface normal can almost be expressed by a universal curve for all cases studied here. The reflection energy spectra are used for the calculation of the reflection coefficient by transport theory including the realistic surface correction. The present work is compared with both experimental measurement and other simulation codes.展开更多
Online assessment of remaining useful life(RUL) of a system or device has been widely studied for performance reliability, production safety, system conditional maintenance, and decision in remanufacturing engineering...Online assessment of remaining useful life(RUL) of a system or device has been widely studied for performance reliability, production safety, system conditional maintenance, and decision in remanufacturing engineering. However,there is no consistency framework to solve the RUL recursive estimation for the complex degenerate systems/device.In this paper, state space model(SSM) with Bayesian online estimation expounded from Markov chain Monte Carlo(MCMC) to Sequential Monte Carlo(SMC) algorithm is presented in order to derive the optimal Bayesian estimation.In the context of nonlinear & non-Gaussian dynamic systems, SMC(also named particle filter, PF) is quite capable of performing filtering and RUL assessment recursively. The underlying deterioration of a system/device is seen as a stochastic process with continuous, nonreversible degrading. The state of the deterioration tendency is filtered and predicted with updating observations through the SMC procedure. The corresponding remaining useful life of the system/device is estimated based on the state degradation and a predefined threshold of the failure with two-sided criterion. The paper presents an application on a milling machine for cutter tool RUL assessment by applying the above proposed methodology. The example shows the promising results and the effectiveness of SSM and SMC online assessment of RUL.展开更多
A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a l...A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.展开更多
The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari...The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.展开更多
提出了一种基于Monte Carlo方法的多机器人自定位方法.该方法在机器人进行自定位时,对用来估计机器人位置的MCL(Monte Carlo Localization)粒子空间进行栅格划分,然后采用可变栅格法获得能代表所有粒子整体特性的特征粒子集.因为特征粒...提出了一种基于Monte Carlo方法的多机器人自定位方法.该方法在机器人进行自定位时,对用来估计机器人位置的MCL(Monte Carlo Localization)粒子空间进行栅格划分,然后采用可变栅格法获得能代表所有粒子整体特性的特征粒子集.因为特征粒子的数量较粒子总数大大减少,该方法能避免直接将Monte Carlo方法应用于多机器人定位中产生的维数灾的问题,可以在保证精度的情况下降低运算复杂度.仿真结果表明,该方法能较好地满足多机器人自定位的要求.展开更多
基金supported by the CAEP Found (No.CX20200028)Youth Program of National Natural Science Foundation of China (No.11705011).
文摘When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.
文摘A model is constructed and used in computing the coagulation probability of free carbon during the detonation of explosives. A direct simulation Monte Carlo (DSMC) program is constructed to simulate the coagulation of free carbon particles. The evaluation of the distribution spectrum of particles in the system is obtained. The simulation result is consistent with the experimental curve.
文摘A Monte Carlo code (MCHGAS) has been developed to investigate the neutral particle transport. The code can calculate the radial profile and energy spectrum of neutral particles in cylindrical plasmas. The calculation time of the code is dramatically reduced when the Splitting and Roulette schemes are applied. The plasma model of an infinite cylinder is assumed in the code, which is very convenient in simulating neutral particle transports in small and middle-sized tokamaks. The design of the multi-channel neutral particle analyser (NPA) on HL-2A can be optimized by using this code.
文摘Neutral particle energy spectra in the HT-7 tokamak are calculated by using the Monte Carlo method. It can reproduce the spectra measured in experiment. Differences of neutral particle energy spectra in higher and lower electron density plasma are discussed. Results show that the ion temperature given by neutral particle energy spectra is lower than the real ion temperature, but the deviation is within 10% if the ion temperature is less than 800 eV and thecentral chord-averaged electron density does not exceed 3 ×1013 cm-3. But for ion temperature higher than 1000 eV at the central chord-averaged density limit up to 5 ×1013 cm-3, the neutral particle energy spectra can still give the ion temperature within 10% deviation.
基金supported by National Natural Science Foundation of China (Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010479)+2 种基金Innovation Research of Nanjing Institute of Technology, China (Grant No. CKJ20100008)Jiangsu Provincial Foundation of 333 Talents Engineering of ChinaJiangsu Provincial Foundation of Six Talented Peak of China
文摘Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.
基金Project supported by the Special Foundation for State Major Basic Research Program of China (Grant No G2000035602) and the National Natural Science Foundation of China (Grant No 90307006).
文摘A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.
基金Projects(51206011,U1937201)supported by the National Natural Science Foundation of ChinaProject(20200301040RQ)supported by the Science and Technology Development Program of Jilin Province,China+1 种基金Project(JJKH20190541KJ)supported by the Education Department of Jilin Province,ChinaProject(18DY017)supported by Changchun Science and Technology Program of Changchun City,China。
文摘The investigation was carried out on the technical problems of finishing the inner surface of elbow parts and the action mechanism of particles in elbow precision machining by abrasive flow.This work was analyzed and researched by combining theory,numerical and experimental methods.The direct simulation Monte Carlo(DSMC)method and the finite element analysis method were combined to reveal the random collision of particles during the precision machining of abrasive flow.Under different inlet velocity,volume fraction and abrasive particle size,the dynamic pressure and turbulence flow energy of abrasive flow in elbow were analyzed,and the machining mechanism of particles on the wall and the influence of different machining parameters on the precision machining quality of abrasive flow were obtained.The test results show the order of the influence of different parameters on the quality of abrasive flow precision machining and establish the optimal process parameters.The results of the surface morphology before and after the precision machining of the inner surface of the elbow are discussed,and the surface roughness Ra value is reduced from 1.125μm to 0.295μm after the precision machining of the abrasive flow.The application of DSMC method provides special insights for the development of abrasive flow technology.
基金Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2013ZX06002001- 007), the National Key Scientific Instrument and Equipment Development Projects, China (No. 2012YQ180118) and the National Natural Science Foundation of China (Nos. 11275110, 11075091 and 11105081).
基金The Project Supported by the National Natural Science Foundation of China
文摘The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail energy spectra for the reflected particles and their angular distribution for different incident angles. It shows that the reflected particle energy spectra can be approximately described by an analytical formula for the whole energy range, all the incident angles and different ion- target combination studied here. The reflected particle energy vs its average reflection angle to the surface normal can almost be expressed by a universal curve for all cases studied here. The reflection energy spectra are used for the calculation of the reflection coefficient by transport theory including the realistic surface correction. The present work is compared with both experimental measurement and other simulation codes.
基金Supported by Basic Research and Development Plan of China (973 Program,Grant Nos.2011CB013401,2011CB013402)Special Fundamental Research Funds for Central Universities of China(Grant No.DUT14QY21)
文摘Online assessment of remaining useful life(RUL) of a system or device has been widely studied for performance reliability, production safety, system conditional maintenance, and decision in remanufacturing engineering. However,there is no consistency framework to solve the RUL recursive estimation for the complex degenerate systems/device.In this paper, state space model(SSM) with Bayesian online estimation expounded from Markov chain Monte Carlo(MCMC) to Sequential Monte Carlo(SMC) algorithm is presented in order to derive the optimal Bayesian estimation.In the context of nonlinear & non-Gaussian dynamic systems, SMC(also named particle filter, PF) is quite capable of performing filtering and RUL assessment recursively. The underlying deterioration of a system/device is seen as a stochastic process with continuous, nonreversible degrading. The state of the deterioration tendency is filtered and predicted with updating observations through the SMC procedure. The corresponding remaining useful life of the system/device is estimated based on the state degradation and a predefined threshold of the failure with two-sided criterion. The paper presents an application on a milling machine for cutter tool RUL assessment by applying the above proposed methodology. The example shows the promising results and the effectiveness of SSM and SMC online assessment of RUL.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2015201166)the Natural Science Foundation of Hebei University,China(No.2013-252)
文摘A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.
文摘The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.
文摘提出了一种基于Monte Carlo方法的多机器人自定位方法.该方法在机器人进行自定位时,对用来估计机器人位置的MCL(Monte Carlo Localization)粒子空间进行栅格划分,然后采用可变栅格法获得能代表所有粒子整体特性的特征粒子集.因为特征粒子的数量较粒子总数大大减少,该方法能避免直接将Monte Carlo方法应用于多机器人定位中产生的维数灾的问题,可以在保证精度的情况下降低运算复杂度.仿真结果表明,该方法能较好地满足多机器人自定位的要求.