To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.How...For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model.展开更多
Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer tra...Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer trajectories. In order to address the usually slow computational time for the determination of the landing footprint of a space-to-ground vehicle under finite thrust, this work proposes a method that uses polynomial equations to describe the boundaries of the landing footprint and uses back propagation(BP) neural networks to quickly determine the landing footprint of the space-to-ground vehicle. First, given orbital parameters and a manoeuvre moment, the solution model of the landing footprint of a space-to-ground vehicle under finite thrust is established. Second, given arbitrary orbital parameters and an arbitrary manoeuvre moment, a fast computational model for the landing footprint of a space-to-ground vehicle based on BP neural networks is provided.Finally, the simulation results demonstrate that under the premise of ensuring accuracy, the proposed method can quickly determine the landing footprint of a space-to-ground vehicle with arbitrary orbital parameters and arbitrary manoeuvre moments. The proposed fast computational method for determining a landing footprint lays a foundation for the parking-orbit configuration and supports the design of real-time transfer trajectories.展开更多
Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a cer...Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle.展开更多
The sinkage of a moving tracked mining vehicle is greatly af fected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based ...The sinkage of a moving tracked mining vehicle is greatly af fected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based on soft deep-sea sediment from a C-C poly-metallic nodule mining area in the Pacific Ocean. Compressive creep tests and shear creep tests are combined to obtain compressive and shear rheological parameters to establish a combined compressive-shear rheological constitutive model and a compression-sinkage rheological constitutive model. The combined compression-shear rheological sinkage of the tracked mining vehicle at dif ferent speeds is calculated using the Recur Dyn software with a selfprogrammed subroutine to implement the combined compression-shear rheological constitutive model. The model results are compared with shear rheological sinkage and ordinary sinkage(without consideration of rheological properties). These results show that the combined compression-shear rheological constitutive model must be taken into account when calculating the sinkage of a tracked mining vehicle. The combined compression-shear rheological sinkage decrease with vehicle speed and is the largest among the three types of sinkage. The developed subroutine in the Recur Dyn software can be used to study the performance and structural optimization of moving tracked mining vehicles.展开更多
Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of land vehicles in global navigation satellite system(GNSS)-denied environment.However,current multi-sensor fusio...Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of land vehicles in global navigation satellite system(GNSS)-denied environment.However,current multi-sensor fusion methods are based on stovepipe architecture,which is optimized with custom fusion strategy for specific sensors.Seeking to develop adaptable navigation that allows rapid integration of any combination of sensors to obtain robust and high-precision navigation solutions in GNSS-denied environment,we propose a generic plug-and-play fusion strategy to estimate land vehicle states.The proposed strategy can handle different sensors in a plug-and-play manner as sensors are abstracted and represented by generic models,which allows rapid reconfiguration whenever a sensor signal is additional or lost during operation.Relative estimations are fused with absolute sensors based on improved factor graph,which includes sensors’error parameters in the non-linear optimization process to conduct sensor online calibration.We evaluate the performance of our approach using a land vehicle equipped with a global positioning system(GPS)receiver as well as inertial measurement unit(IMU),camera,wireless sensor and odometer.GPS is not integrated into the system but treated as ground truth.Results are compared with the most common filtering-based fusion algorithm.It shows that our strategy can process low-quality input sources in a plug-and-play and robust manner and its performance outperforms filtering-based method in GNSS-denied environment.展开更多
Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adh...Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method.展开更多
A brand new method of automatic north seeking/sight stabilizing is introduced for usage in land fighting vehicles such as tank, etc. Some inertial devices are installed additionally on the platform along with relat...A brand new method of automatic north seeking/sight stabilizing is introduced for usage in land fighting vehicles such as tank, etc. Some inertial devices are installed additionally on the platform along with relative control circuits to make its function of North seeking possible. Double position calculation is adopted in this method, and by alignment at two sites the azimuth angle can be figured out. Also the orientation and the horizontal shifts of the gyro are simultaneously measured and compensated so as to improve the accuracy of north seeking. The system can automatically seek north when the vehicle is immobile. And the time consumption is no more than 5.5 min. Besides, the system can keep azimuth angle and provide tilt angle and pitch angle of the vehicle.展开更多
A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. ...A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.展开更多
Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,a...Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test.展开更多
Tradeoff analysis of the factors,including external environment and unmanned aerial vehicle(UAV)aerodynamic attributes,which affect longitudinal carrier landing performance,is important for small UAV.First,small UAV l...Tradeoff analysis of the factors,including external environment and unmanned aerial vehicle(UAV)aerodynamic attributes,which affect longitudinal carrier landing performance,is important for small UAV.First,small UAV longitudinal carrier landing system is established,as well as the nonlinear dynamics and kinematics model,and then the longitudinal flight control system using backstepping technology with minimum information about the aerodynamic is designed.To assess the landing performance,a variety of influencing factors are considered,resulting in the constraints of aerodynamic attributes of carrier UAV.The simulation results show that the severe sea condition has the greatest influence on landing dispersion,while air wake is the primary factor on impact velocity.Among the longitudinal aerodynamic parameters,the lift curve slope is the most important factor affecting the landing performance,and increasing lift curve slope can improve the landing performance significantly.A better system performance will be achieved when the lift curve slope is larger than 2per radian.展开更多
All automobile manufacturing companies, Google and Microsoft have announced recently their production of the Fully Automated Autonomous Vehicles (FAAVs), otherwise known as driverless cars. A few FAAVs would be availa...All automobile manufacturing companies, Google and Microsoft have announced recently their production of the Fully Automated Autonomous Vehicles (FAAVs), otherwise known as driverless cars. A few FAAVs would be available in the market as early as in 2018, but mostly in 2020’s. When FAAVs will be available to and become affordable by the average consumers, the implications to the society would be far reaching. The purpose of the paper is to examine the prospect of the popularity of FAAVs and their socio-economic implications to the future society of the World. The paper examines potential impacts on selected sectors of the society including changes in demand for automobiles, its impact on the use of oil, on the environment, and on urban land uses, to list a few.展开更多
The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distributio...The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distribution of deep-sea resources.Section 2 reviews the mechanical properties and fracture mechanism of seabed and related continental rocks,which contributes to the advancement of relevant technologies and theories.Deep-sea mining systems developed by coastal countries are presented in Section 3.Seabed mineral collection systems are critically assessed in Section 4.Subsea mining vehicle is reviewed by walking mechanism and controlling system in Section 5.In Section 6,the development of subsea lifting system is detailed by dividing it into hydraulic and pneumatic lifting modes,and some technical problems in the lifting system are described.An in-depth description of surface support systems is presented in Section 7,which includes the deep-sea mining ship,dynamic positioning system,heave compensation system,launch and retrieval system,mineral disposing system as well as the storage and transferring systems.Section 8 discusses the challenges in the deep-sea mining,in terms of natural occurrence conditions,international legal framework and cooperative mining,environmental protection and economic benefits,etc.Finally,a brief summary and some aspects of prospective research are presented in Section 9.展开更多
While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been ex...While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been explored thoroughly yet. In this paper, we present an automatic, video-based algorithm for detecting hydraulic excavators and dump trucks. Derived from lessons learned from video processing, we proposed methods for foreground detection based on an improved frame difference algorithm, and then detected hydraulic excavators and dump trucks in the respective region of interest. From our analysis, we proposed methods based on inverse valley feature of mechanical arm and spatial-temporal reasoning for hydraulic excavator detection. In addition, we explored dump truck detection strategies that combine structured component projection with the spatial relationship. Experiments on real-monitoring sites demonstrated the promising performance of our system.展开更多
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.
基金supported in part by the National Natural Science Foundations of China(Nos.61304223,61673209,61533008)the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(No.NJ20160026)
文摘For carrier-based unmanned aerial vehicles(UAVs),one of the important problems is the design of an automatic carrier landing system(ACLS)that would enable the UAVs to accomplish autolanding on the aircraft carrier.However,due to the movements of the flight deck with six degree-of-freedom,the autolanding becomes sophisticated.To solve this problem,an accurate and effective ACLS is developed,which is composed of an optimal preview control based flight control system and a Kalman filter based deck motion predictor.The preview control fuses the future information of the reference glide slope to improve landing precision.The reference glide slope is normally a straight line.However,the deck motion will change the position of the ideal landing point,and tracking the ideal straight glide slope may cause landing failure.Therefore,the predictive deck motion information from the deck motion predictor is used to correct the reference glide slope,which decreases the dispersion around the desired landing point.Finally,simulations are carried out to verify the performance of the designed ACLS based on a nonlinear UAV model.
基金supported by the National Natural Science Foundation of China (61603398)。
文摘Fast computation of the landing footprint of a space-to-ground vehicle is a basic requirement for the deployment of parking orbits, as well as for enabling decision makers to develop real-time programs of transfer trajectories. In order to address the usually slow computational time for the determination of the landing footprint of a space-to-ground vehicle under finite thrust, this work proposes a method that uses polynomial equations to describe the boundaries of the landing footprint and uses back propagation(BP) neural networks to quickly determine the landing footprint of the space-to-ground vehicle. First, given orbital parameters and a manoeuvre moment, the solution model of the landing footprint of a space-to-ground vehicle under finite thrust is established. Second, given arbitrary orbital parameters and an arbitrary manoeuvre moment, a fast computational model for the landing footprint of a space-to-ground vehicle based on BP neural networks is provided.Finally, the simulation results demonstrate that under the premise of ensuring accuracy, the proposed method can quickly determine the landing footprint of a space-to-ground vehicle with arbitrary orbital parameters and arbitrary manoeuvre moments. The proposed fast computational method for determining a landing footprint lays a foundation for the parking-orbit configuration and supports the design of real-time transfer trajectories.
基金Projects(51274251,11502226)supported by the National Natural Science Foundation of China
文摘Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle.
基金Supported by the National Natural Science Foundation of China(Nos.51274251,11502226)
文摘The sinkage of a moving tracked mining vehicle is greatly af fected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based on soft deep-sea sediment from a C-C poly-metallic nodule mining area in the Pacific Ocean. Compressive creep tests and shear creep tests are combined to obtain compressive and shear rheological parameters to establish a combined compressive-shear rheological constitutive model and a compression-sinkage rheological constitutive model. The combined compression-shear rheological sinkage of the tracked mining vehicle at dif ferent speeds is calculated using the Recur Dyn software with a selfprogrammed subroutine to implement the combined compression-shear rheological constitutive model. The model results are compared with shear rheological sinkage and ordinary sinkage(without consideration of rheological properties). These results show that the combined compression-shear rheological constitutive model must be taken into account when calculating the sinkage of a tracked mining vehicle. The combined compression-shear rheological sinkage decrease with vehicle speed and is the largest among the three types of sinkage. The developed subroutine in the Recur Dyn software can be used to study the performance and structural optimization of moving tracked mining vehicles.
基金partially supported by the National Natural Science Foundation of China(No. 61703207)the Jiangsu Provincial Natural Science Founda- tion of China(No. BK20170801)+2 种基金the Aeronautical Science Foundation of China(No. 2017ZC52017)the Jiangsu Provincial SixTalent Peaks(No. 2015-XXRJ-005)the Jiangsu Province Qing Lan Project
文摘Achieving accurate navigation information by integrating multiple sensors is key to the safe operation of land vehicles in global navigation satellite system(GNSS)-denied environment.However,current multi-sensor fusion methods are based on stovepipe architecture,which is optimized with custom fusion strategy for specific sensors.Seeking to develop adaptable navigation that allows rapid integration of any combination of sensors to obtain robust and high-precision navigation solutions in GNSS-denied environment,we propose a generic plug-and-play fusion strategy to estimate land vehicle states.The proposed strategy can handle different sensors in a plug-and-play manner as sensors are abstracted and represented by generic models,which allows rapid reconfiguration whenever a sensor signal is additional or lost during operation.Relative estimations are fused with absolute sensors based on improved factor graph,which includes sensors’error parameters in the non-linear optimization process to conduct sensor online calibration.We evaluate the performance of our approach using a land vehicle equipped with a global positioning system(GPS)receiver as well as inertial measurement unit(IMU),camera,wireless sensor and odometer.GPS is not integrated into the system but treated as ground truth.Results are compared with the most common filtering-based fusion algorithm.It shows that our strategy can process low-quality input sources in a plug-and-play and robust manner and its performance outperforms filtering-based method in GNSS-denied environment.
基金financial support from the National Natural Science Foundation of China(No.51605220)the Jiangsu Province Natural Science Foundation,China(No.BK20160793)+1 种基金the Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics,China(No.xcxjh20210514)the Fundamental Research Funds for the Central Universities,China(No.XCA2205406)。
文摘Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method.
文摘A brand new method of automatic north seeking/sight stabilizing is introduced for usage in land fighting vehicles such as tank, etc. Some inertial devices are installed additionally on the platform along with relative control circuits to make its function of North seeking possible. Double position calculation is adopted in this method, and by alignment at two sites the azimuth angle can be figured out. Also the orientation and the horizontal shifts of the gyro are simultaneously measured and compensated so as to improve the accuracy of north seeking. The system can automatically seek north when the vehicle is immobile. And the time consumption is no more than 5.5 min. Besides, the system can keep azimuth angle and provide tilt angle and pitch angle of the vehicle.
文摘A scheme of guidance and control is presented to meet the requirements for automatic landing of unmanned aerial vehicles (UAVs) based on the airborne digital flight control system and radio tracker on ground station. An automatic landing system is realized for an unmanned aerial vehicle. The results of real time simulation and flight test are given to illustrate the effectiveness and availability of the scheme. Results meet all the requirements for automatic landing of the unmanned aerial vehicle.
文摘Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test.
基金supported by the National Nature Science Foundation of China(Nos.61304223,61403197)the Aeronautical Science Foundation of China(No.2013ZA52002)the Research Fund for the Doctoral Program of Higher Education of China(No.20123218120015)
文摘Tradeoff analysis of the factors,including external environment and unmanned aerial vehicle(UAV)aerodynamic attributes,which affect longitudinal carrier landing performance,is important for small UAV.First,small UAV longitudinal carrier landing system is established,as well as the nonlinear dynamics and kinematics model,and then the longitudinal flight control system using backstepping technology with minimum information about the aerodynamic is designed.To assess the landing performance,a variety of influencing factors are considered,resulting in the constraints of aerodynamic attributes of carrier UAV.The simulation results show that the severe sea condition has the greatest influence on landing dispersion,while air wake is the primary factor on impact velocity.Among the longitudinal aerodynamic parameters,the lift curve slope is the most important factor affecting the landing performance,and increasing lift curve slope can improve the landing performance significantly.A better system performance will be achieved when the lift curve slope is larger than 2per radian.
文摘All automobile manufacturing companies, Google and Microsoft have announced recently their production of the Fully Automated Autonomous Vehicles (FAAVs), otherwise known as driverless cars. A few FAAVs would be available in the market as early as in 2018, but mostly in 2020’s. When FAAVs will be available to and become affordable by the average consumers, the implications to the society would be far reaching. The purpose of the paper is to examine the prospect of the popularity of FAAVs and their socio-economic implications to the future society of the World. The paper examines potential impacts on selected sectors of the society including changes in demand for automobiles, its impact on the use of oil, on the environment, and on urban land uses, to list a few.
基金the support provided by the National Natural Science Foundation of China(Nos.51909075 and 52371275)the China Postdoctoral Science Foundation(No.2021M690879)the Chinese Fundamental Research Funds for the Central Universities(No.B230203007).
文摘The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distribution of deep-sea resources.Section 2 reviews the mechanical properties and fracture mechanism of seabed and related continental rocks,which contributes to the advancement of relevant technologies and theories.Deep-sea mining systems developed by coastal countries are presented in Section 3.Seabed mineral collection systems are critically assessed in Section 4.Subsea mining vehicle is reviewed by walking mechanism and controlling system in Section 5.In Section 6,the development of subsea lifting system is detailed by dividing it into hydraulic and pneumatic lifting modes,and some technical problems in the lifting system are described.An in-depth description of surface support systems is presented in Section 7,which includes the deep-sea mining ship,dynamic positioning system,heave compensation system,launch and retrieval system,mineral disposing system as well as the storage and transferring systems.Section 8 discusses the challenges in the deep-sea mining,in terms of natural occurrence conditions,international legal framework and cooperative mining,environmental protection and economic benefits,etc.Finally,a brief summary and some aspects of prospective research are presented in Section 9.
文摘While vehicle detection on highways has been reported before, to the best of our knowledge, intelligent monitoring system that aims at detecting hydraulic excavators and dump trucks on state-owned land has not been explored thoroughly yet. In this paper, we present an automatic, video-based algorithm for detecting hydraulic excavators and dump trucks. Derived from lessons learned from video processing, we proposed methods for foreground detection based on an improved frame difference algorithm, and then detected hydraulic excavators and dump trucks in the respective region of interest. From our analysis, we proposed methods based on inverse valley feature of mechanical arm and spatial-temporal reasoning for hydraulic excavator detection. In addition, we explored dump truck detection strategies that combine structured component projection with the spatial relationship. Experiments on real-monitoring sites demonstrated the promising performance of our system.