Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples wer...Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.展开更多
Mozambique is an essential country in the Belt and Road Initiative,and it is also to cooperation between China and with Africa in energy resources.It is located in the critical node of the“East Africa Channel”and cl...Mozambique is an essential country in the Belt and Road Initiative,and it is also to cooperation between China and with Africa in energy resources.It is located in the critical node of the“East Africa Channel”and close to the“African Twin Ocean Railway”,which is an important strategic position.Mozambique has abundant mineral resources and vast reserves of advantageous minerals.The natural gas reserves of Mozambique ranked second in Africa.It also has world--class scale graphite and rich iron,gold,copper,niobium-tantalum and other resources.In recent years,the mining industry in this country has been rising and attracting many foreign companies to invest,including international mining giants such as Vale,Rio Tinto and large mining enterprises of China.This paper systematically studies the mineral resources endowment,exploration and development situations of natural gas,graphite,titanium-zircon placer deposits,niobium-tantalum,gold,iron and other strategic minerals in Mozambique,comprehensively analyzes the mining investment environment and the current situation of exploration and development of Chinese enterprises in Mozambique,and replans four safeguard areas of strategic mineral resources in critical short supply.Mozambique generally has good prospects of mining investment and a stable foundation for cooperation with China.Chinese enterprises can focus on oil and natural gas,graphite,titanium,zirconium,niobium,tantalum,and iron,which complement the needs of China,expand the mining capacity cooperation,and improve the ability to secure strategic mineral resources supply.展开更多
On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit format...On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment.展开更多
Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the ri...Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed.展开更多
Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fl...Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.展开更多
Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical str...Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.展开更多
A recently developed method, on the bases of “multifractal spectrum” filters for mineral exploration, is introduced in this paper. The “multifractal spectrum” filters, a group of irregularly shaped filters that a...A recently developed method, on the bases of “multifractal spectrum” filters for mineral exploration, is introduced in this paper. The “multifractal spectrum” filters, a group of irregularly shaped filters that are constructed on each processed datum, can be used to separate various types of geochemical and geophysical anomalies. The basic model, with an emphasis on the GIS based implementation and the application to the geochemical and geophysical data processing for mineral exploration in southern Nova Scotia, Canada, indicates its advantage in the separation of multiple anomalies from the background.展开更多
In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration ...In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration of hydrogen gas(Klein et al.,2019;Prinzhofer et al.,2019;Moretti and Webber,2021;Scott,2021;Bezruchko,2022).However,there is a lack of research on the occurrence state of natural hydrogen gas,which hinders a deeper understanding of its behavior in underground storage and migration.展开更多
The phenomena of TL are connected with the defect structures of the atomic lattice of the material concerned, and hence are very sensitive to changes in defection of the country rocks status as induced by the minerali...The phenomena of TL are connected with the defect structures of the atomic lattice of the material concerned, and hence are very sensitive to changes in defection of the country rocks status as induced by the mineralizing solution. In other words, the TL of the country rocks from the mineralized area should be quite different from that in the intact barren area.Besides the high sensitivity as mentioned above, advantages of the application of TL techniques to the mineral exploration the easiness in accessing to proper samples, the easy preparation of samples and the quickness in sample processing all amount to convenience and economy of the techniques, indicating the high competitiveness of the TL mineral exploration method, especially during the development stage of mining operations.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ...Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation.展开更多
For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data repre...For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest forms of large-scale geophysical exploration.With the identification of potential fields,we can get the map of worms or skeletonizations showing the three-dimension structure of shallow crust,and find the展开更多
For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data repre...For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest ways of large-scale geophysical exploration.With the identification of potential mineral fields,we can get the map of worms or skeletonizations showing展开更多
The study is concerned with the airborne magnetic and gravity data aiming at evaluating the terminal of mineral system.Nihe iron deposit,situated in the center of Luzong ore cluster area,is the case to our study.Diffe...The study is concerned with the airborne magnetic and gravity data aiming at evaluating the terminal of mineral system.Nihe iron deposit,situated in the center of Luzong ore cluster area,is the case to our study.Different tectonic environments,source material,and preservation background illustrate distinct properties in the geophysical observation results.展开更多
As acknowledged that the exploration is the first step before reaching the discovery of profitable economic raw materials. However, it is also representing a high risk financially because it is possible that the areas...As acknowledged that the exploration is the first step before reaching the discovery of profitable economic raw materials. However, it is also representing a high risk financially because it is possible that the areas discovered is not economically worthwhile, at that time the stakeholder will confront difficult return their exploration expenses. Therefore, the exploration process executed in multiple stages before increasing expenses for the detection. The business of mineral exploration, one of high cost investment especially if it was in rugged mountain areas, which is difficult to reach and has a very high cost of access, consequentially increased the exploration costs. The reasons for doing this research in rough mountainous area using geospatial technology, can be justified to be valuable, time-saving and cost-reducing. Therefore, we can see that one of the solid factors that helped the study is using of GIS technology in the rough terrain area, which strongly and effectively contributes to the display of spatial information and linking the study, and analysis of the information collected by using GIS programs. Subsequently, its benefits minimizing exploration costs, and selecting targets with confidence and effective field work. Most of the data related to the operations of mineral exploration have a spatial nature. So, GIS has the capability for storage, updating, revising, displaying, retrieving, processing, manipulating and integrating of different geo-spatial data. By ending of this study, we will be able to save time and money and increase profitability and efficacy.展开更多
The concept, as well as the methodology of using a mineral-inspired approach in combination with solution parallel synthesis (SPS) for exploration of new phosphors among Na/Sr(Ba)/Al-silicate and Zr(Ti)-silicate miner...The concept, as well as the methodology of using a mineral-inspired approach in combination with solution parallel synthesis (SPS) for exploration of new phosphors among Na/Sr(Ba)/Al-silicate and Zr(Ti)-silicate minerals, is reported. By employing the proposed approach, we have discovered new phosphors of NaAlSiO4:Eu2+ and BaZrSi3O9:Eu2+, that emit green-yellow (553 nm) and blue-green (480 nm) light, respectively, when excited by radiation of 290 to 420 nm.展开更多
Much of Cameroon’s sub-surface wealth is still to be discovered and valorised. In the quest to step up the exploration of these non-renewable natural resources, many techniques are being developed amongst which we ha...Much of Cameroon’s sub-surface wealth is still to be discovered and valorised. In the quest to step up the exploration of these non-renewable natural resources, many techniques are being developed amongst which we have Remote sensing. To boost mineral exploration in Cameroon, this study applied Remote sensing techniques in the Mballe area in order to establish the geological and mineral wealth on thematic maps. This exploration was characterised by the treatment of Landsat satellite 8 images?coupled with intensive fieldwork. With each phase having a specific objective, results of the two activities were compiled for analysis. It was found out that of the eight rock samples collected from the field (amphibole gneiss, quartzite, schist, gneiss, granite, granodiorite, syenite and laterite), they were mainly of metamorphic and plutonic origins. These rocks project to the surface in different forms and the local population uses them in different ways. Their fractures constitute the main paths through which the hydrographic network follows. The treated satellite image showed that gold concentrated in areas where clay and laterite are found especially in the south of the Mballe area. Furthermore, fieldwork also proved that this mineral concentrated at river meanders and confluences. Such a study can be applied in any locality of the country in order to boost mineral exploitation that will contribute to the GDP as the government has embarked on attaining an emerging nation by 2035.展开更多
In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respectiv...In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respective regulations. The current acts were enacted in 2010 and 2004 respectively. Mineral exploration (that includes all on-site activities performed before a mining project is declared feasible) projects in URT appears to be “unforgotten phenomena” in the two major legislative documents, when it comes to environmental considerations. This phenomenon is believed to be causing detrimental effects to the environment. This paper, therefore, analyzes the current environmental regulatory framework on mineral exploration projects in URT and discusses few examples in which mineral exploration projects have caused damage to the indigenous environment. Furthermore, this study reviews environmental regulatory frameworks from other few countries in comparison with existing environmental regulatory framework prevailing in URT.展开更多
With the approval of the Chinese and Japanese governments, the Chinese Research Center for Mineral Resources Exploration was inaugurated on August 11, 1994, a project of technological cooperation co-sponsored by the C...With the approval of the Chinese and Japanese governments, the Chinese Research Center for Mineral Resources Exploration was inaugurated on August 11, 1994, a project of technological cooperation co-sponsored by the CAS and Japan International Cooperation Agency (JICA). Its domestic partners include the Geological Bureau of展开更多
Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision...Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.展开更多
基金Supported by the National Natural Science Foundation of China(No.42106080)the Laboratory for Marine Geology+2 种基金China Ocean Mineral Resources R&D Association Project(No.DY135-S2-2-03)the Natural Science Foundation of Shandong Province(No.ZR2020QD074)the Talents Research Start-up Funding Project of Ludong University。
文摘Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.
基金Supported by projects of China Geological Survey(Nos.DD20190457,DD20160119 and DD20190415).
文摘Mozambique is an essential country in the Belt and Road Initiative,and it is also to cooperation between China and with Africa in energy resources.It is located in the critical node of the“East Africa Channel”and close to the“African Twin Ocean Railway”,which is an important strategic position.Mozambique has abundant mineral resources and vast reserves of advantageous minerals.The natural gas reserves of Mozambique ranked second in Africa.It also has world--class scale graphite and rich iron,gold,copper,niobium-tantalum and other resources.In recent years,the mining industry in this country has been rising and attracting many foreign companies to invest,including international mining giants such as Vale,Rio Tinto and large mining enterprises of China.This paper systematically studies the mineral resources endowment,exploration and development situations of natural gas,graphite,titanium-zircon placer deposits,niobium-tantalum,gold,iron and other strategic minerals in Mozambique,comprehensively analyzes the mining investment environment and the current situation of exploration and development of Chinese enterprises in Mozambique,and replans four safeguard areas of strategic mineral resources in critical short supply.Mozambique generally has good prospects of mining investment and a stable foundation for cooperation with China.Chinese enterprises can focus on oil and natural gas,graphite,titanium,zirconium,niobium,tantalum,and iron,which complement the needs of China,expand the mining capacity cooperation,and improve the ability to secure strategic mineral resources supply.
基金supported by the National High Technology Research Development Program of China (Nos. 2006AA06Z115, 2006AA06Z113)Program of Yunnan Tin Industry Group Company Ltd..
文摘On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment.
基金supported by an NSERC-DG grant(Grant No.RGPIN-2018-06458,to Chi)National Natural Science Foundation of China grant(Grant No.41930428,to Xu)。
文摘Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed.
基金partly funded by the National Natural Science Foundation of China(Grant Nos.41230311,41572069,41702070)the National Key Research and Development Project of China(2016YFC0600307)+2 种基金the National Key Research Program of China(Grant Nos.2016YFC0600107-4 and 2016YFC0600307)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Grant No.MSFGPMR201804)the 111 Project of the Ministry of Science and Technology,China(Grant No.BP0719021)。
文摘Concept-based orogenic gold exploration requires a scale-integrated approach using a robust mineral system model.Most genetic hypotheses for orogenic gold deposits that involve near-surface or magmatic-hydrothermal fluids are now negated in terms of a global mineral system model.Plausible models involve metamorphic fluids,but the fluid source has been equivocal.Crustal metamorphic-fluid models are most widely-accepted but there are serious problems for Archean deposits,and numerous Chinese provinces,including Jiaodong,where the only feasible fluid source is sub-crustal.If all orogenic gold deposits define a coherent mineral system,there are only two realistic sources of fluid and gold,based on their syn-mineralization geodynamic settings.These are from devolatilization of a subducted oceanic slab with its overlying gold-bearing sulfide-rich sedimentary package,or release from mantle lithosphere that was metasomatized and fertilized during a subduction event,particularly adjacent to craton margins.In this model,CO_2 is generated during decarbonation and S and ore-related elements released from transformation of pyrite to pyrrhotite at about 500 ℃.This orogenic gold mineral system can be applied to conceptual exploration by first identifying the required settings at geodynamic to deposit scales.Within these settings,it is then possible to define the critical gold mineralization processes in the system:fertility,architecture,and preservation.The geological parameters that define these processes,and the geological,geophysical and geochemical proxies and responses for these critical parameters can then be identified.At the geodynamic to province scales,critical processes include a tectonic thermal engine and deep,effective,fluid plumbing system driven by seismic swarms up lithosphere-scale faults in an oblique-slip regime during uplift late in the orogenic cycle of a convergent margin.At the district to deposit scale,the important processes are fluid focussing into regions of complex structural geometry adjacent to crustal-scale plumbing systems,with gold deposition in trap sites involving complex conjugations of competent and/or reactive rock sequences and structural or lithological fluid caps.Critical indirect responses to defined parameters change from those generated by geophysics to those generated by geochemistry with reduction in scale of the mineral system-driven conceptual exploration.
文摘Discovery rates for all metals, including gold, are declining, the cost per significant discovery is increasing sharply, and the economic situation of the industry is one of low base rate. The current hierarchical structure of the exploration and mining industry makes this situation difficult to redress. Economic geologists can do little to influence the required changes to the overall structure and philosophy of an industry driven by business rather than geological principles, However, it should be possible to follow the lead of the oil industry and improve the success rate of greenfield exploration, necessary for the next group of lower-exploration-spend significant mineral deposit discoveries. Here we promote the concept that mineral explorers need to carefully consider the scale at which their exploration targets are viewed. It is necessary to carefully assess the potential of drill targets in terms of terrane to province to district scale, rather than deposit scale, where most current economic geology research and conceptual thinking is concentrated. If orogenic, IRGD, Carlin-style and IOCG gold-rich systems are viewed at the deposit scale, they appear quite different in terms of conventionally adop- ted research parameters. However, recent models for these deposit styles show increasingly similar source-region parameters when viewed at the lithosphere scale, suggesting common tectonic settings. It is only by assessing individual targets in their tectonic context that they can be more reliably ranked in terms of potential to provide a significant drill discovery. Targets adjacent to craton margins, other lithosphere boundaries, and suture zones are clearly favoured for all of these gold deposit styles, and such exploration could lead to incidental discovery of major deposits of other metals sited along the same tectonic boundaries.
文摘A recently developed method, on the bases of “multifractal spectrum” filters for mineral exploration, is introduced in this paper. The “multifractal spectrum” filters, a group of irregularly shaped filters that are constructed on each processed datum, can be used to separate various types of geochemical and geophysical anomalies. The basic model, with an emphasis on the GIS based implementation and the application to the geochemical and geophysical data processing for mineral exploration in southern Nova Scotia, Canada, indicates its advantage in the separation of multiple anomalies from the background.
基金funded by the National Key Research and Development Program of China (2019YFA0708504)the National Science Foundation of China (42090025)+1 种基金the National Postdoctoral Researcher Funding Program (GZB20240009)the American Association of Petroleum Geologists Foundation for the year 2023
文摘In recent years,natural hydrogen has been discovered in various geological environments both domestically and internationally,which has sparked a global interest among geologists and led to a surge in the exploration of hydrogen gas(Klein et al.,2019;Prinzhofer et al.,2019;Moretti and Webber,2021;Scott,2021;Bezruchko,2022).However,there is a lack of research on the occurrence state of natural hydrogen gas,which hinders a deeper understanding of its behavior in underground storage and migration.
文摘The phenomena of TL are connected with the defect structures of the atomic lattice of the material concerned, and hence are very sensitive to changes in defection of the country rocks status as induced by the mineralizing solution. In other words, the TL of the country rocks from the mineralized area should be quite different from that in the intact barren area.Besides the high sensitivity as mentioned above, advantages of the application of TL techniques to the mineral exploration the easiness in accessing to proper samples, the easy preparation of samples and the quickness in sample processing all amount to convenience and economy of the techniques, indicating the high competitiveness of the TL mineral exploration method, especially during the development stage of mining operations.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
基金by the National Natural Science Foundation of China(41772076,41672084,41372086,41503038)the National Key Research and Development Program of China(2016YFC0600105-04,2016YFC0600606)+1 种基金the Key Research and Development Program of Shandong Province(2017CXGC1601,2017CXGC1602,2017CXGC1603),the Special Fund for“Taishan Scholars”Project of Shandong Province.
文摘Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation.
文摘For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest forms of large-scale geophysical exploration.With the identification of potential fields,we can get the map of worms or skeletonizations showing the three-dimension structure of shallow crust,and find the
文摘For the sustainable supply of mineral resources, blind deposits are becoming the emphasis of exploration after long-period exploitation of exposed deposits.The collection and analysis of gravity or magnetic data represents one of the cheapest ways of large-scale geophysical exploration.With the identification of potential mineral fields,we can get the map of worms or skeletonizations showing
基金granted by National Natural Science Foundation of China(Grant No.92062108)the Basic Scientific Research Funds of the Key Laboratory of Airborne Geophysics and Remote Sensing Geology,Ministry of Natural Resources(Grant No.2020YFL14)the China Geological Survey Project(Grant No.DD20190012)
文摘The study is concerned with the airborne magnetic and gravity data aiming at evaluating the terminal of mineral system.Nihe iron deposit,situated in the center of Luzong ore cluster area,is the case to our study.Different tectonic environments,source material,and preservation background illustrate distinct properties in the geophysical observation results.
文摘As acknowledged that the exploration is the first step before reaching the discovery of profitable economic raw materials. However, it is also representing a high risk financially because it is possible that the areas discovered is not economically worthwhile, at that time the stakeholder will confront difficult return their exploration expenses. Therefore, the exploration process executed in multiple stages before increasing expenses for the detection. The business of mineral exploration, one of high cost investment especially if it was in rugged mountain areas, which is difficult to reach and has a very high cost of access, consequentially increased the exploration costs. The reasons for doing this research in rough mountainous area using geospatial technology, can be justified to be valuable, time-saving and cost-reducing. Therefore, we can see that one of the solid factors that helped the study is using of GIS technology in the rough terrain area, which strongly and effectively contributes to the display of spatial information and linking the study, and analysis of the information collected by using GIS programs. Subsequently, its benefits minimizing exploration costs, and selecting targets with confidence and effective field work. Most of the data related to the operations of mineral exploration have a spatial nature. So, GIS has the capability for storage, updating, revising, displaying, retrieving, processing, manipulating and integrating of different geo-spatial data. By ending of this study, we will be able to save time and money and increase profitability and efficacy.
文摘The concept, as well as the methodology of using a mineral-inspired approach in combination with solution parallel synthesis (SPS) for exploration of new phosphors among Na/Sr(Ba)/Al-silicate and Zr(Ti)-silicate minerals, is reported. By employing the proposed approach, we have discovered new phosphors of NaAlSiO4:Eu2+ and BaZrSi3O9:Eu2+, that emit green-yellow (553 nm) and blue-green (480 nm) light, respectively, when excited by radiation of 290 to 420 nm.
文摘Much of Cameroon’s sub-surface wealth is still to be discovered and valorised. In the quest to step up the exploration of these non-renewable natural resources, many techniques are being developed amongst which we have Remote sensing. To boost mineral exploration in Cameroon, this study applied Remote sensing techniques in the Mballe area in order to establish the geological and mineral wealth on thematic maps. This exploration was characterised by the treatment of Landsat satellite 8 images?coupled with intensive fieldwork. With each phase having a specific objective, results of the two activities were compiled for analysis. It was found out that of the eight rock samples collected from the field (amphibole gneiss, quartzite, schist, gneiss, granite, granodiorite, syenite and laterite), they were mainly of metamorphic and plutonic origins. These rocks project to the surface in different forms and the local population uses them in different ways. Their fractures constitute the main paths through which the hydrographic network follows. The treated satellite image showed that gold concentrated in areas where clay and laterite are found especially in the south of the Mballe area. Furthermore, fieldwork also proved that this mineral concentrated at river meanders and confluences. Such a study can be applied in any locality of the country in order to boost mineral exploitation that will contribute to the GDP as the government has embarked on attaining an emerging nation by 2035.
文摘In the United Republic of Tanzania (URT), all environmental issues related to the mining industry are regulated according to two principle Acts: The Mining Act and the Environmental Management Act, and their respective regulations. The current acts were enacted in 2010 and 2004 respectively. Mineral exploration (that includes all on-site activities performed before a mining project is declared feasible) projects in URT appears to be “unforgotten phenomena” in the two major legislative documents, when it comes to environmental considerations. This phenomenon is believed to be causing detrimental effects to the environment. This paper, therefore, analyzes the current environmental regulatory framework on mineral exploration projects in URT and discusses few examples in which mineral exploration projects have caused damage to the indigenous environment. Furthermore, this study reviews environmental regulatory frameworks from other few countries in comparison with existing environmental regulatory framework prevailing in URT.
文摘With the approval of the Chinese and Japanese governments, the Chinese Research Center for Mineral Resources Exploration was inaugurated on August 11, 1994, a project of technological cooperation co-sponsored by the CAS and Japan International Cooperation Agency (JICA). Its domestic partners include the Geological Bureau of
基金supported by the National Key Research and Development Program of China (2022YFC2905001)the National Natural Science Foundation of China (42272093,42230813)+1 种基金China Scholarship Council projectthe Geological Survey project (DD20230054)
文摘Jiama,with more than 11 Mt of copper metal,is the largest porphyry-skarn copper system in the Gangdese metallogenic belt,Tibet,China,creating ideal conditions for deciphering the origin of porphyry ores in a collision setting.Despite massive studies of the geology,chronology,petrogenesis,and ore-related fluids and their sources in Jiama,there is a lack of systematic summaries and reviews of this system.In contrast to traditional porphyry copper systems in a subduction setting,recent studies and exploration suggest that the Jiama deposit includes porphyry-type Mo-Cu,skarn-type Cu polymetallic,vein-type Au and manto orebodies.This paper reviews the latest studies on the geology,chronology,petrogenesis,fluid inclusions,and isotopic geochemistry(hydrogen,oxygen,sulfur,and lead)of the Jiama deposit.Accordingly,a multi-center complex mineralization model was constructed,indicating that multi-phase intrusions from the same magma reservoir can form multiple hydrothermal centers.These centers are mutually independent and form various orebodies or are superimposed on each other and form thick,high-grade orebodies.Finally,a new comprehensive exploration model was established for the Jiama porphyry copper system.Both models established in this study help to refine the theories on continental-collision metallogeny and porphyry copper systems.