期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of fluid modulus inversion to complex lithology reservoirs in deep-water areas
1
作者 Zhaoming Chen Huaxing Lyu +2 位作者 Zhongtao Zhang Yanhui Zhu Baojun Liu 《Energy Geoscience》 EI 2024年第1期153-161,共9页
It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicti... It has been a challenge to distinguish between seismic anomalies caused by complex lithology and hydrocarbon reservoirs using conventional fluid identification techniques,leading to difficulties in accurately predicting hydrocarbon-bearing properties and determining oil-water contacts in reservoirs.In this study,we built a petrophysical model tailored to the deep-water area of the Baiyun Sag in the eastern South China Sea based on seismic data and explored the feasibility of the tri-parameter direct inversion method in the fluid identification of complex lithology reservoirs,offering a more precise alternative to conventional techniques.Our research found that the fluid modulus can successfully eliminate seismic amplitude anomalies caused by lithological variations.Furthermore,the seismic databased direct inversion for fluid modulus can remove the cumulative errors caused by indirect inversion and the influence of porosity.We discovered that traditional methods using seismic amplitude anomalies were ineffective in detecting fluids,determining gas-water contacts,or delineating high-quality reservoirs.However,the fluid factor Kf,derived from solid-liquid decoupling,proved to be sensitive to the identification of hydrocarbon-bearing properties,distinguishing between high-quality and poor-quality gas zones.Our findings confirm the value of the fluid modulus in fluid identification and demonstrate that the tri-parameter direct inversion method can significantly enhance hydrocarbon exploration in deep-water areas,reducing associated risks. 展开更多
关键词 Fluid identification Seismic fluid factor Solid-liquid decoupling deep-water area complex lithology reservoir
下载PDF
Migrated hybrid turbidite-contourite channel-lobe complex of the late Eocene Rovuma Basin, East Africa 被引量:4
2
作者 Yintao Lu Xiwu Luan +7 位作者 Boqing Shi Weimin Ran Fuliang Lü Xiujuan Wang Quanbin Cao Xiaoyong Xu Hui Sun Genshun Yao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第2期81-94,共14页
Analysis of 3 D seismic data and well log data from the Rovuma Basin in East Africa reveals the presence of a late Eocene channel-lobe complex on its slope.The first two channels,denoted as channel-1 and channel-2,are... Analysis of 3 D seismic data and well log data from the Rovuma Basin in East Africa reveals the presence of a late Eocene channel-lobe complex on its slope.The first two channels,denoted as channel-1 and channel-2,are initiated within a topographic low on the slope but come to a premature end when they are blocked by a topographic high in the northwest region of the basin.New channels migrate southeastward from channel-1 to channel-6 due to the region’s sufficient sediment supply and stripping caused by bottom currents.The primary factors controlling the development of the channel complex include its initial paleo-topographic of seafloor,the property of gravity flows,the direction of the bottom current,and the stacking and expansion of its levees.The transition zone from channel to lobe can also be clearly identified from seismic sections by its pond-shaped structure.At a certain point,thest systems record a transiton from erosive features to sedimentary features,and record a transition from a confined environment to an open environment.Channels and lobes can be differentiated by their morphologies:thick slump-debris flows are partly developed under channel sand sheets,whereas these slump-debris flows are not very well developed in lobes.Well log responses also record different characteristics between channels and lobes.The interpreted shale volume throughout the main channel records a box-shaped curve,thereby implying that confined channel complexes record high energy currents and abundant sand supply,whereas the interpreted shale volume throughout the lobe records an upward-fining shape curve,thereby indicating the presence of a reduced-energy current in a relatively open environment.Within the Rovuma Basin of East Africa,the average width of the Rovuma shelf is less than 10 km,the width of the slope is only approximately 40 km,and the slope gradient is 2°–4°.Due to this steep slope gradient,the sand-rich top sheet within the channel also likely contributes to the straight feature of the channel system.It is currently unclear whether the bottom current has any effect on its sinuosity. 展开更多
关键词 East Africa Rovuma Basin deep-water sediment channel-lobe complex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部