期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Surface Defect Detection and Evaluation Method of Large Wind Turbine Blades Based on an Improved Deeplabv3+Deep Learning Model
1
作者 Wanrun Li Wenhai Zhao +1 位作者 Tongtong Wang Yongfeng Du 《Structural Durability & Health Monitoring》 EI 2024年第5期553-575,共23页
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ... The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades. 展开更多
关键词 Structural health monitoring computer vision blade surface defects detection Deeplabv3+ deep learning model
下载PDF
街景精细尺度下城市经济发展预测及有效性评估
2
作者 柳林 张振岩 +1 位作者 项子诚 郭靖雯 《地理学报》 EI CSSCI CSCD 北大核心 2024年第8期1978-1993,共16页
随着城市化进程加快,传统大尺度遥感影像数据和经济统计方法无法从精细尺度刻画城市经济发展动态。街景影像可以反映城市建成环境物质空间特征,基于此可以在更精细尺度上对经济发展指标预测。本文提出一种改进的Deeplabv3_MEP街景影像... 随着城市化进程加快,传统大尺度遥感影像数据和经济统计方法无法从精细尺度刻画城市经济发展动态。街景影像可以反映城市建成环境物质空间特征,基于此可以在更精细尺度上对经济发展指标预测。本文提出一种改进的Deeplabv3_MEP街景影像语义分割模型,提取街景要素占比,采用图神经网络与卷积神经网络分别以街景要素指标和街景影像作为输入,预测经济指标;并利用XGBoost模型分析经济指标驱动因素,计算碳汇并构建Lasso回归模型评估行政区绿色经济发展有效性。结果发现:①在市级区划尺度上,济南市经济指标呈现向市中心高度集中、向外围逐渐降低趋势;②在区级区划尺度上,历下区经济发展水平最高,东部零星地区发展水平极高,其余地区较低;③在街道级区划尺度上,越靠近区或县中心街道,居民平均收入水平越高,越靠近市中心街道,居民平均收入水平更高;④驱动因素方面,围墙、天空、道路、建筑与汽车等要素对经济发展指标贡献较大,电线杆、摩托车等要素对经济发展贡献较小,公交车要素最低;⑤济南市存在绿色经济发展指数与经济发展水平不匹配现象。本文的研究方法不仅为精细尺度城市经济发展预测提供了研究框架的借鉴,也为理解城市绿色经济发展效能提供了新视角,有助于城市规划和可持续发展政策的制定。 展开更多
关键词 街景影像 DeepLabv3_MEP模型 GCN模型 CNN模型 经济发展指标预测 济南市
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部