期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度学习多部位病灶检测与分割
1
作者 黎生丹 柏正尧 《中国图象图形学报》 CSCD 北大核心 2021年第11期2723-2731,共9页
目的多部位病灶具有大小各异和类型多样的特点,对其准确检测和分割具有一定的难度。为此,本文设计了一种2.5D深度卷积神经网络模型,实现对多种病灶类型的计算机断层扫描(computed tomography,CT)图像的病灶检测与分割。方法利用密集卷... 目的多部位病灶具有大小各异和类型多样的特点,对其准确检测和分割具有一定的难度。为此,本文设计了一种2.5D深度卷积神经网络模型,实现对多种病灶类型的计算机断层扫描(computed tomography,CT)图像的病灶检测与分割。方法利用密集卷积网络和双向特征金字塔网络组成的骨干网络提取图像中的多尺度和多维度信息,输入为带有标注的中央切片和提供空间信息的相邻切片共同组合而成的CT切片组。将融合空间信息的特征图送入区域建议网络并生成候选区域样本,再由多阈值级联网络组成的Cascade R-CNN(region convolutional neural networks)筛选高质量样本送入检测与分割分支进行训练。结果本文模型在DeepLesion数据集上进行验证。结果表明,在测试集上的平均检测精度为83.15%,分割预测结果与真实标签的端点平均距离误差为1.27 mm,直径平均误差为1.69 mm,分割性能优于MULAN(multitask universal lesion analysis network for joint lesion detection,tagging and segmentation)和Auto RECIST(response evaluation criteria in solid tumors),且推断每幅图像平均时间花费仅91.7 ms。结论对于多种部位的CT图像,本文模型取得良好的检测与分割性能,并且预测时间花费较少,适用病变类别与DeepLesion数据集类似的CT图像实现病灶检测与分割。本文模型在一定程度上能满足医疗人员利用计算机分析多部位CT图像的需求。 展开更多
关键词 深度学习 计算机断层扫描(CT)图像 病灶检测 病灶分割 DeepLesion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部