期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
1
作者 陈思汗 黎俊 +5 位作者 刘可可 孙笑晨 万京伟 翟慧宇 唐新峰 谭刚健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期560-567,共8页
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit... Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs. 展开更多
关键词 Ga-doped Li_7La_3Zr_2O_(12)(Ga-LLZO) defect chemistry engineering high room temperature ionic conductivity electrochemical stability
下载PDF
Understanding the defect chemistry of oxide nanoparticles for creating new functionalities:A critical review 被引量:3
2
作者 LI GuangShe,LI LiPing & ZHENG Jing State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China 《Science China Chemistry》 SCIE EI CAS 2011年第6期876-886,共11页
This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectri... This work presents a critical review on the studies of defect chemistry of oxide nanoparticles for creating new functionalities pertinent to energy applications including dilute-magnetic semiconductors,giant-dielectrics,or white light generation.Emphasis is placed on the relationships between the internal structure and defective surfaces of oxide nanoparticles and their synergy in tailoring the materials properties.This review is arranged in a sequence:(1) structural fundamentals of bulk oxides,using TiO2 as a model simple oxide to highlight the importance of polymorphs in tuning the electronic structures;(2) structural features of simple oxide nanoparticles distinct from the bulk,which show that nanoparticles can be considered as a special solid under the compression as originated from the surface defect dipole-dipole interactions;and(3) new functions achieved through extending the defect chemistry concept to the assembled architectures or multi-component oxide nanoparticles,in which defect surfaces enable the localized electrons or intermediate levels to produce giant dielectric performance or tunable light generation.It is concluded that understandings of defect chemistry provide diverse possibilities to manipulate electrons in oxide nanoparticles for functionalities in energy-relevant applications. 展开更多
关键词 NANOPARTICLES defect chemistry SURFACES FUNCTIONALITIES
原文传递
Defect chemistry for extrinsic doping in ductile semiconductor α-Ag_(2)S
3
作者 Hexige Wuliji Kunpeng Zhao +5 位作者 Huirong Jing Runxin Ouyang Yu Yang Tian-Ran Wei Hong Zhu Xun Shi 《Journal of Materiomics》 SCIE 2024年第6期1270-1278,共9页
As a new type of inorganic ductile semiconductor,silver sulfide(α-Ag_(2)S)has garnered a plethora of interests in recent years due to its promising applications in flexible electronics.However,the lack of detailed de... As a new type of inorganic ductile semiconductor,silver sulfide(α-Ag_(2)S)has garnered a plethora of interests in recent years due to its promising applications in flexible electronics.However,the lack of detailed defect calculations and chemical intuition has largely hindered the optimization of material's performance.In this study,we systematically investigate the defect chemistry of extrinsic doping inα-Ag_(2)S using first-principles calculations.We computationally examine a broad suite of 17 dopants and find that all aliovalent elements have extremely low doping limits(<0.002%)in α-Ag_(2)S,rendering them ineffective in tuning the electron concentrations.In contrast,the isovalent elements Se and Te have relatively high doping limits,being consistent with the experimental observations.While the dopant Se or Te itself does not provide additional electrons,its introduction has a significant impact on the band gap,the band-edge position,and especially the formation energy of Ag interstitials,which effectively improve the electron concentrations by 2–3 orders of magnitudes.The size effects of Se and Te doping are responsible for the more favorable Ag interstitials in Ag_(2)S_(0.875)Se_(0.125) and Ag_(2)S_(0.875)Te_(0.125) with respect to pristine Ag2S.This work serves as a theoretical foundation for the rational design of Ag_(2)S-based functional materials. 展开更多
关键词 defect chemistry Extrinsic doping Thermoelectric Silver sulfide First-principles
原文传递
Boosting Electrocatalytic Oxygen Evolution by Cation Defect Modulation via Electrochemical Etching 被引量:4
4
作者 Xiang Chen Meng Yu +8 位作者 Zhenhua Yan Weiyi Guo Guilan Fan Youxuan Ni Jiuding Liu Wei Zhang Wei Xie Fangyi Cheng Jun Chen 《CCS Chemistry》 CAS 2021年第1期675-685,共11页
Defects engineering is an efficient strategy to enhance the performance of electrode materials by modulating the local electronic structure but usually requires costly and complicated processing.Here,an electrochemica... Defects engineering is an efficient strategy to enhance the performance of electrode materials by modulating the local electronic structure but usually requires costly and complicated processing.Here,an electrochemical reduction etching method has been developed for controllable tailoring of the cationic defects in iron-based oxides under mild conditions.The optimized defective spinel-type iron nickel oxide exhibits an overpotential as low as 270 mV at 10 mA cm−2 and a Tafel slope of only 33.8 mV dec−1 for the oxygen evolution reaction(OER),outperforming the benchmark RuO2 and pristine oxide.Experiments and theoretical calculations reveal that Fe vacancies can enhance Ni–O covalency,increase the density of active sites,and optimize the surface electronic structure,which promote the water adsorption/activation and moderate oxygen intermediate species adsorption,thus significantly enhancing OER activity.This work provides a promising approach to create cation deficiency and mechanistic insight to understand the vacancy-induced enhancement of oxygen electrocatalysis. 展开更多
关键词 defect chemistry electrochemical synthesis spinel oxide oxygen evolution metal–oxygen covalency
原文传递
The role of oxygen vacancies in metal oxides for rechargeable ion batteries 被引量:2
5
作者 Runzhe Wei Yi Lu Yang Xu 《Science China Chemistry》 SCIE EI CSCD 2021年第11期1826-1853,共28页
Rechargeable ion batteries are one of the most reliable energy storage technologies for the applications ranging from small portable devices and electric vehicles to renewable energy integration and large-scale statio... Rechargeable ion batteries are one of the most reliable energy storage technologies for the applications ranging from small portable devices and electric vehicles to renewable energy integration and large-scale stationary energy storage.In the roadmap of developing and understanding new electrode materials for rechargeable ion batteries,oxygen vacancies,known as defects in metal oxides,have shown a high impact on the final electrochemical performance of the oxides.The present review aims to summarise the synthesis methods and characterisation techniques of oxygen vacancies as well as some of the most recent and exciting progress made to understand the role of oxygen vacancies in the electrochemical performance of Li-,Na-,K-and Zn-ion batteries.This review discusses not only the role of oxygen vacancies directly in electrode materials and indirectly in the coating layers on electrode materials,but also the synergistic role of oxygen vacancies interplaying with other contributors such as carbonaceous materials,doping,amorphisation,structural transformation,nanostructuring and functional coating.Finally,perspectives are given to stimulate new ideas and open questions to facilitate the further development of oxygen deficient electrode materials in energy research landscape. 展开更多
关键词 oxygen vacancies defect chemistry metal oxide rechargeable ion batteries ion diffusion intercalation reaction conversion reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部