With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivo...With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.There...Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.展开更多
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ...Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.展开更多
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect...Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.展开更多
Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including lo...Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements.展开更多
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ...Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities.展开更多
Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an i...Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies.展开更多
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige...Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.展开更多
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o...Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.展开更多
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim...Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.展开更多
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable...Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.展开更多
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b...As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ...To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.展开更多
The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complica...Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement.展开更多
An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects s...An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects show that the improved Roberts operator can attain accurate positioning to defect contour and get complete edge information.Meanwhile,a decreasing amount of interference noises as well as more precise characteristic parameters of the extracted defects can also be confirmed for the improved algorithm.Furthermore,the BP neural network adopted for defects classification with the improved Roberts operator can obtain the target training precision with 98 iterative steps and time of 2s while that of traditional Roberts operator is 118 steps and 4s.Finally,an enhanced defects identification rate of 13.33%has also been confirmed after the Roberts operator is improved.The proposed detecting platform will be positive in producing high-quality heavy rails and guaranteeing the national transportation safety.展开更多
In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the ov...In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted.展开更多
基金supported by the Natural Science Foundation of Heilongjiang Province(Grant Number:LH2021F002).
文摘With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金supported by the Ministry of Education Humanities and Social Science Research Project(No.23YJAZH034)The Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.SJCX24_2147,SJCX24_2148)+1 种基金National Computer Basic Education Research Project in Higher Education Institutions(Nos.2024-AFCEC-056,2024-AFCEC-057)Enterprise Collaboration Project(Nos.Z421A22349,Z421A22304,Z421A210045).
文摘Printed circuit boards(PCBs)provide stable connections between electronic components.However,defective printed circuit boards may cause the entire equipment system to malfunction,resulting in incalculable losses.Therefore,it is crucial to detect defective printed circuit boards during the generation process.Traditional detection methods have low accuracy in detecting subtle defects in complex background environments.In order to improve the detection accuracy of surface defects on industrial printed circuit boards,this paper proposes a residual large kernel network based on YOLOv5(You Only Look Once version 5)for PCBs surface defect detection,called YOLO-RLC(You Only Look Once-Residual Large Kernel).Build a deep large kernel backbone to expand the effective field of view,capture global informationmore efficiently,and use 1×1 convolutions to balance the depth of the model,improving feature extraction efficiency through reparameterization methods.The neck network introduces a bidirectional weighted feature fusion network,combined with a brand-new noise filter and feature enhancement extractor,to eliminate noise information generated by information fusion and recalibrate information from different channels to improve the quality of deep features.Simplify the aspect ratio of the bounding box to alleviate the issue of specificity values.After training and testing on the PCB defect dataset,our method achieved an average accuracy of 97.3%(mAP50)after multiple experiments,which is 4.1%higher than YOLOv5-S,with an average accuracy of 97.6%and an Frames Per Second of 76.7.The comparative analysis also proves the superior performance and feasibility of YOLO-RLC in PCB defect detection.
基金supported in part by the National Natural Science Foundation of China under grants 62202044 and 62372039Scientific and Technological Innovation Foundation of Foshan under grant BK22BF009+3 种基金Excellent Youth Team Project for the Central Universities under grant FRF-EYIT-23-01Fundamental Research Funds for the Central Universities under grants 06500103 and 06500078Guangdong Basic and Applied Basic Research Foundation under grant 2022A1515240044Beijing Natural Science Foundation under grant 4232040.
文摘Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR.
基金supported by the National Natural Science Foundation of China under Grant No.61976226the Research and Academic Team of South-CentralMinzu University under Grant No.KTZ20050.
文摘Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.
基金supported in part by the IoT Intelligent Microsystem Center of Tsinghua University-China Mobile Joint Research Institute.
文摘Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements.
基金supported by the Science and Technology Development Fund of Macao(Grant No.0079/2019/AMJ)the National Key R&D Program of China(No.2019YFE0111400).
文摘Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2022R1I1A3063493).
文摘Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies.
基金supported by the National Natural Science Foundation of China(51805078)Project of National Key Laboratory of Advanced Casting Technologies(CAT2023-002)the 111 Project(B16009).
文摘Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.
基金supported by the National Natural Science Foundation of China(No.61976083)Hubei Province Key R&D Program of China(No.2022BBA0016).
文摘Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images.
基金Intelligent Manufacturing and Robot Technology Innovation Project of Beijing Municipal Commission of Science and Technology and Zhongguancun Science and Technology Park Management Committee,Grant/Award Number:Z221100000222016National Natural Science Foundation of China,Grant/Award Number:62076014Beijing Municipal Education Commission and Beijing Natural Science Foundation,Grant/Award Number:KZ202010005004。
文摘Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection.
基金State Grid Jiangsu Electric Power Co.,Ltd.of the Science and Technology Project(Grant No.J2022004).
文摘Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects.
基金supported in part by the National Natural Science Foundation of China under Grants 32171909,51705365,52205254The Guangdong Basic and Applied Basic Research Foundation under Grants 2020B1515120050,2023A1515011255+2 种基金The Guangdong Key R&D projects under Grant 2020B0404030001the Scientific Research Projects of Universities in Guangdong Province under Grant 2020KCXTD015The Ji Hua Laboratory Open Project under Grant X220931UZ230.
文摘As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金supported by the National Natural Science Foundation of China(12002138).
文摘To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金supported by the National Natural Science Foundation of China under Grant 62266034the Ningxia Natural Science Foundation Key Program underGrant2023AAC02011.
文摘Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement.
基金Supported by the National Natural Science Foundation of China(No.51174151)Major Scientific Research Projects of Hubei Provincial Department of Education(No.2010Z19003)+1 种基金Natural Science Foundation of Science and Technology Department of Hubei Province(No.2010CDB03403)Student Research Fund of WUST(No.14ZRB047)
文摘An experimental platform accompanying with the improved Roberts algorithm has been developed to achieve accurate and real-time edge detection of surface defects on heavy rails.Detection results of scratching defects show that the improved Roberts operator can attain accurate positioning to defect contour and get complete edge information.Meanwhile,a decreasing amount of interference noises as well as more precise characteristic parameters of the extracted defects can also be confirmed for the improved algorithm.Furthermore,the BP neural network adopted for defects classification with the improved Roberts operator can obtain the target training precision with 98 iterative steps and time of 2s while that of traditional Roberts operator is 118 steps and 4s.Finally,an enhanced defects identification rate of 13.33%has also been confirmed after the Roberts operator is improved.The proposed detecting platform will be positive in producing high-quality heavy rails and guaranteeing the national transportation safety.
文摘In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted.