期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Method for Detecting Industrial Defects in Intelligent Manufacturing Using Deep Learning
1
作者 Bowen Yu Chunli Xie 《Computers, Materials & Continua》 SCIE EI 2024年第1期1329-1343,共15页
With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivo... With the advent of Industry 4.0,marked by a surge in intelligent manufacturing,advanced sensors embedded in smart factories now enable extensive data collection on equipment operation.The analysis of such data is pivotal for ensuring production safety,a critical factor in monitoring the health status of manufacturing apparatus.Conventional defect detection techniques,typically limited to specific scenarios,often require manual feature extraction,leading to inefficiencies and limited versatility in the overall process.Our research presents an intelligent defect detection methodology that leverages deep learning techniques to automate feature extraction and defect localization processes.Our proposed approach encompasses a suite of components:the high-level feature learning block(HLFLB),the multi-scale feature learning block(MSFLB),and a dynamic adaptive fusion block(DAFB),working in tandem to extract meticulously and synergistically aggregate defect-related characteristics across various scales and hierarchical levels.We have conducted validation of the proposed method using datasets derived from gearbox and bearing assessments.The empirical outcomes underscore the superior defect detection capability of our approach.It demonstrates consistently high performance across diverse datasets and possesses the accuracy required to categorize defects,taking into account their specific locations and the extent of damage,proving the method’s effectiveness and reliability in identifying defects in industrial components. 展开更多
关键词 Industrial defect detection deep learning intelligent manufacturing
下载PDF
Research and Application of Log Defect Detection and Visualization System Based on Dry Coupling Ultrasonic Method
2
作者 Yongning Yuan Dong Zhang +4 位作者 Usama Sayed Hao Zhu Jun Wang Xiaojun Yang Zheng Wang 《Journal of Renewable Materials》 EI 2023年第11期3917-3932,共16页
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system... In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments. 展开更多
关键词 Ultrasonic method log defect detection visualization system dry coupling B-scan pulse transmission method bilinear image interpolation algorithm edge detection algorithm
下载PDF
Semi-supervised surface defect detection of wind turbine blades with YOLOv4
3
作者 Chao Huang Minghui Chen Long Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期284-292,共9页
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ... Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR. 展开更多
关键词 defect detection Generative adversarial network scSE attention Semi-supervision Wind turbine
下载PDF
SDH-FCOS:An Efficient Neural Network for Defect Detection in Urban Underground Pipelines
4
作者 Bin Zhou Bo Li +2 位作者 Wenfei Lan Congwen Tian Wei Yao 《Computers, Materials & Continua》 SCIE EI 2024年第1期633-652,共20页
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect... Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model. 展开更多
关键词 Urban underground pipelines defect detection SDH-FCOS feature fusion SPPF dual detection heads
下载PDF
Industry-Oriented Detection Method of PCBA Defects Using Semantic Segmentation Models
5
作者 Yang Li Xiao Wang +10 位作者 Zhifan He Ze Wang Ke Cheng Sanchuan Ding Yijing Fan Xiaotao Li Yawen Niu Shanpeng Xiao Zhenqi Hao Bin Gao Huaqiang Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1438-1446,共9页
Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including lo... Automated optical inspection(AOI)is a significant process in printed circuit board assembly(PCBA)production lines which aims to detect tiny defects in PCBAs.Existing AOI equipment has several deficiencies including low throughput,large computation cost,high latency,and poor flexibility,which limits the efficiency of online PCBA inspection.In this paper,a novel PCBA defect detection method based on a lightweight deep convolution neural network is proposed.In this method,the semantic segmentation model is combined with a rule-based defect recognition algorithm to build up a defect detection frame-work.To improve the performance of the model,extensive real PCBA images are collected from production lines as datasets.Some optimization methods have been applied in the model according to production demand and enable integration in lightweight computing devices.Experiment results show that the production line using our method realizes a throughput more than three times higher than traditional methods.Our method can be integrated into a lightweight inference system and pro-mote the flexibility of AOI.The proposed method builds up a general paradigm and excellent example for model design and optimization oriented towards industrial requirements. 展开更多
关键词 Automated optical inspection(AOI) deep learning defect detection printed circuit board assembly(PCBA) semantic segmentation.
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation
6
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 defect detection time series deep learning data augmentation data transformation
下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
7
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
下载PDF
A Hybrid Deep Learning and Machine Learning-Based Approach to Classify Defects in Hot Rolled Steel Strips for Smart Manufacturing
8
作者 Tajmal Hussain Jungpyo Hong Jongwon Seok 《Computers, Materials & Continua》 SCIE EI 2024年第8期2099-2119,共21页
Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an i... Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies. 展开更多
关键词 Smart manufacturing steel defect detection deep learning CNN
下载PDF
SAM Era:Can It Segment Any Industrial Surface Defects?
9
作者 Kechen Song Wenqi Cui +2 位作者 Han Yu Xingjie Li Yunhui Yan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3953-3969,共17页
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige... Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS. 展开更多
关键词 Segment anything SAM surface defect detection salient object detection
下载PDF
Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism
10
作者 Xinyu Hu Defeng Kong +2 位作者 Xiyang Liu Junwei Zhang Daode Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期915-933,共19页
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o... Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images. 展开更多
关键词 Neural networks deep learning ResNet small object feature extraction PCB surface defect detection
下载PDF
3D reconstruction and defect pattern recognition of bonding wire based on stereo vision
11
作者 Naigong Yu Hongzheng Li +2 位作者 Qiao Xu Ouattara Sie Essaf Firdaous 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期348-364,共17页
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim... Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection. 展开更多
关键词 bonding wire defect detection point cloud point cloud segmentation
下载PDF
A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects
12
作者 Xiao Lu Chengling Jiang +2 位作者 Zhoujun Ma Haitao Li Yuexin Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期373-390,共18页
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable... Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects. 展开更多
关键词 Insulator defect detection small object power line deformable attention mechanism
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection
13
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Strip steel surface defect detection algorithm based on improved Faster R-CNN
14
作者 齐继阳 吴宇帆 《China Welding》 CAS 2024年第2期11-22,共12页
To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different ... To solve the problems of the low accuracy and poor real-time performance of traditional strip steel surface defect detection meth-ods,which are caused by the characteristics of many kinds,complex shapes,and different scales of strip surface defects,a strip steel surface defect detection algorithm based on improved Faster R-CNN is proposed.Firstly,the residual convolution module is inserted into the Swin Transformer network module to form the RC-Swin Transformer network module,and the RC-Swin Transformer module is introduced into the backbone network of the traditional Faster R-CNN to enhance the ability of the network to extract the global feature information of the image and adapt to the complex shape of the strip steel surface defect.To improve the attention of the network to defects in the image,a CBAM-BiFPN network module is designed,and then the backbone network is combined with the CBAM-BiFPN network to realize the de-tection and fusion of multi-scale features.The RoI align layer is used instead of the RoI pooling layer to improve the accuracy of defect loca-tion.Finally,Soft NMS is used to achieve non-maximum suppression and remove redundant boxes.In the comparative experiment on the NEU-DET dataset,the improved algorithm improves the mean average precision by 4.2%compared with the Faster R-CNN algorithm,and also improves the average precision by 6.1%and 6.7%for crazing defect and rolled-in scale defect,which are difficult to detect with the Faster R-CNN algorithm.The experiments show that the improvements proposed in the paper effectively improve the detection accuracy of the algorithm and have certain practical value. 展开更多
关键词 defect detection RC-Swin Transformer CBAM-BiFPN RoI align Soft NMS
下载PDF
An Approach to Detect Structural Development Defects in Object-Oriented Programs
15
作者 Maxime Seraphin Gnagne Mouhamadou Dosso +1 位作者 Mamadou Diarra Souleymane Oumtanaga 《Open Journal of Applied Sciences》 2024年第2期494-510,共17页
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti... Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects. 展开更多
关键词 Object-Oriented Programming Structural Development defect Detection Software Maintenance Pre-Trained Models Features Extraction BAGGING Neural Network
下载PDF
Electromagnetic Tomography System for Defect Detection of High-Speed Rail Wheel 被引量:1
16
作者 Yu Miao Xianglong Liu +4 位作者 Ze Liu Yuanli Yue Jianli Wu Jiwei Huo Yong Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期474-483,共10页
A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped... A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped sensor array was designed,and then a simulation model was built with the low frequency electromagnetic simulation software.Three different algorithms were applied to perform image reconstruction,therefore the defects can be detected from the reconstructed images.Based on the simulation results,an experimental system was built and image reconstruction were performed with the measured data.The reconstructed images obtained both from numerical simulation and experimental system indicated the locations of the defects of the wheel,which verified the feasibility of the EMT system and revealed its good application prospect in the future. 展开更多
关键词 electromagnetic tomography(EMT) high-speed rail wheel defect detection image reconstruction
下载PDF
Review of Fabric Defect Detection Based on Computer Vision 被引量:2
17
作者 朱润虎 辛斌杰 +1 位作者 邓娜 范明珠 《Journal of Donghua University(English Edition)》 CAS 2023年第1期18-26,共9页
In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the ov... In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted. 展开更多
关键词 computer vision fabric defect detection algorithm evaluation textile inspection
下载PDF
Visualization for Explanation of Deep Learning-Based Defect Detection Model Using Class Activation Map 被引量:1
18
作者 Hyunkyu Shin Yonghan Ahn +3 位作者 Mihwa Song Heungbae Gil Jungsik Choi Sanghyo Lee 《Computers, Materials & Continua》 SCIE EI 2023年第6期4753-4766,共14页
Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however... Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however,the predicted results have uncertainty in providing accurate informa-tion to users because of the“black box”problem in the deep learning model.Therefore,this study proposes a visual explanation method to overcome the uncertainty limitation of CNN-based defect identification.The visual repre-sentative gradient-weights class activation mapping(Grad-CAM)method is adopted to provide visually explainable information.A visualizing evaluation index is proposed to quantitatively analyze visual representations;this index reflects a rough estimate of the concordance rate between the visualized heat map and intended defects.In addition,an ablation study,adopting three-branch combinations with the VGG16,is implemented to identify perfor-mance variations by visualizing predicted results.Experiments reveal that the proposed model,combined with hybrid pooling,batch normalization,and multi-attention modules,achieves the best performance with an accuracy of 97.77%,corresponding to an improvement of 2.49%compared with the baseline model.Consequently,this study demonstrates that reliable results from an automatic defect classification model can be provided to an inspector through the visual representation of the predicted results using CNN models. 展开更多
关键词 defect detection VISUALIZATION class activation map deep learning EXPLANATION visualizing evaluation index
下载PDF
A Defect Detection Method for the Primary Stage of Software Development 被引量:1
19
作者 Qiang Zhi Wanxu Pu +1 位作者 Jianguo Ren Zhengshu Zhou 《Computers, Materials & Continua》 SCIE EI 2023年第3期5141-5155,共15页
In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large numb... In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large number of misunderstandings.To generate high-quality software requirements specifications,numerous researchers have developed a variety of ways to improve the quality of SRS.In this paper,we propose a questions extraction method based on SRS elements decomposition,which evaluates the quality of SRS in the form of numerical indicators.The proposed method not only evaluates the quality of SRSs but also helps in the detection of defects,especially the description problem and omission defects in SRSs.To verify the effectiveness of the proposed method,we conducted a controlled experiment to compare the ability of checklist-based review(CBR)and the proposed method in the SRS review.The CBR is a classicmethod of reviewing SRS defects.After a lot of practice and improvement for a long time,CBR has excellent review ability in improving the quality of software requirements specifications.The experimental results with 40 graduate studentsmajoring in software engineering confirmed the effectiveness and advantages of the proposed method.However,the shortcomings and deficiencies of the proposed method are also observed through the experiment.Furthermore,the proposed method has been tried out by engineers with practical work experience in software development industry and received good feedback. 展开更多
关键词 Computer science software engineering requirement engineering software quality defect detection
下载PDF
Virtual simulation experiment of the design and manufacture of a beer bottle-defect detection system 被引量:1
20
作者 Yuxiang ZHAO Xiaowei AN Nongliang SUN 《Virtual Reality & Intelligent Hardware》 2020年第4期354-367,共14页
Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice opera... Background Machine learning-based beer bottle-defect detection is a complex technology that runs automatically;however,it consumes considerable memory,is expensive,and poses a certain danger when training novice operators.Moreover,some topics are difficult to learn from experimental lectures,such as digital image processing and computer vision.However,virtual simulation experiments have been widely used to good effect within education.A virtual simulation of the design and manufacture of a beer bottle-defect detection system will not only help the students to increase their image-processing knowledge,but also improve their ability to solve complex engineering problems and design complex systems.Methods The hardware models for the experiment(camera,light source,conveyor belt,power supply,manipulator,and computer)were built using the 3DS MAX modeling and animation software.The Unreal Engine 4(UE4)game engine was utilized to build a virtual design room,design the interactive operations,and simulate the system operation.Results The results showed that the virtual-simulation system received much better experimental feedback,which facilitated the design and manufacture of a beer bottle-defect detection system.The specialized functions of the functional modules in the detection system,including a basic experimental operation menu,power switch,image shooting,image processing,and manipulator grasping,allowed students(or virtual designers)to easily build a detection system by retrieving basic models from the model library,and creating the beer-bottle transportation,image shooting,image processing,defect detection,and defective-product removal.The virtual simulation experiment was completed with image processing as the main body.Conclusions By mainly focusing on bottle mouth defect detection,the detection system dedicates more attention to the user and the task.With more detailed tasks available,the virtual system will eventually yield much better results as a training tool for image processing education.In addition,a novel visual perception-thinking pedagogical framework enables better comprehension than the traditional lecture-tutorial style. 展开更多
关键词 Virtual simulation experiment Beer bottle defect detection Image processing Training tool
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部