This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of analytic functions. The effort is laid out in the Hardy space over the bidisk H^2(D^2). A closed subspace M in H^2(D^2) is ...This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of analytic functions. The effort is laid out in the Hardy space over the bidisk H^2(D^2). A closed subspace M in H^2(D^2) is called a submodule if ziM ? M(i = 1, 2). An associated integral operator(defect operator) CM captures much information about M. Using a Kre??n space indefinite metric on the range of CM, this paper gives a representation of M. Then it studies the group(called Lorentz group) of isometric self-maps of M with respect to the indefinite metric, and in finite rank case shows that the Lorentz group is a complete invariant for congruence relation. Furthermore, the Lorentz group contains an interesting abelian subgroup(called little Lorentz group) which turns out to be a finer invariant for M.展开更多
基金supported by Grant-in-Aid for Young Scientists(B)(Grant No.23740106)
文摘This paper aims to introduce some new ideas into the study of submodules in Hilbert spaces of analytic functions. The effort is laid out in the Hardy space over the bidisk H^2(D^2). A closed subspace M in H^2(D^2) is called a submodule if ziM ? M(i = 1, 2). An associated integral operator(defect operator) CM captures much information about M. Using a Kre??n space indefinite metric on the range of CM, this paper gives a representation of M. Then it studies the group(called Lorentz group) of isometric self-maps of M with respect to the indefinite metric, and in finite rank case shows that the Lorentz group is a complete invariant for congruence relation. Furthermore, the Lorentz group contains an interesting abelian subgroup(called little Lorentz group) which turns out to be a finer invariant for M.