The potassium-feldspar can be decomposed using the KOH as additive via hydrothermal synthesis methods, which can destroy the structure of the potassium-feldspar and turns its K+ into water soluble potash resources and...The potassium-feldspar can be decomposed using the KOH as additive via hydrothermal synthesis methods, which can destroy the structure of the potassium-feldspar and turns its K+ into water soluble potash resources and make its silica component utilized. The potassium-feldspar from Inner Mogolia was decomposed after iron removing and hydrothermal processes successively. The results showed(Table 1) that the iron could be removed up to 98.56% after the treatment of 90℃ for 2 hours with 5.8mol/L density of HCL solution. It is seen from the Table 1that the content of iron significantly decreased while the content of SiO2, Al2O3, K2O increase. The treated sample was used to be decomposed by hydrothermal method in KOH solution. The results showed that the dissolution rate of SiO2 could be up to 64.73% after the hydrothermal treatment of 260 ℃ for 2 hours with 1.2 mol/L density of KOH(Fig 1). The solid product is mailnly kalsilite phase.展开更多
The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reage...The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.展开更多
基金Project supported by National Key Technologies Research and Development Program for 11th Five-year Plan(No. 2006BAD10B04)China Geological Survey Project(No. 12120113087700)
文摘The potassium-feldspar can be decomposed using the KOH as additive via hydrothermal synthesis methods, which can destroy the structure of the potassium-feldspar and turns its K+ into water soluble potash resources and make its silica component utilized. The potassium-feldspar from Inner Mogolia was decomposed after iron removing and hydrothermal processes successively. The results showed(Table 1) that the iron could be removed up to 98.56% after the treatment of 90℃ for 2 hours with 5.8mol/L density of HCL solution. It is seen from the Table 1that the content of iron significantly decreased while the content of SiO2, Al2O3, K2O increase. The treated sample was used to be decomposed by hydrothermal method in KOH solution. The results showed that the dissolution rate of SiO2 could be up to 64.73% after the hydrothermal treatment of 260 ℃ for 2 hours with 1.2 mol/L density of KOH(Fig 1). The solid product is mailnly kalsilite phase.
基金financially supported by the Natural Science Foundation of Hubei Province,China(No.2014CFB794)the Young Fund of Wuhan Institute of Technology(No.Q201405)the Natural Science Foundation of Hunan Province for International Cooperation and Innovation(Nos.2017JJ4035 and 2016WK2049)
文摘The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.