There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam...There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam extracted system is different.The control of HVPS includes the current settings, the status display and the HV turn on/off.展开更多
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra...The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
The function of dynamic track drawing realized in the ship monitoring system. Based on the function, we could draw the sailing tracks dynamically according to the ship's orientation. Two kernel algorithms are involve...The function of dynamic track drawing realized in the ship monitoring system. Based on the function, we could draw the sailing tracks dynamically according to the ship's orientation. Two kernel algorithms are involved during the system developing process, i.e. the algorithms of angular deflection and distance interval value. The practice of system development shows that the proper application of these two algorithms has good effect'in the visualization of sailing track.展开更多
The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical h...The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%.展开更多
This study presents a numerical investigation of dewatering-induced settlement and wall deflection during pumping tests in Tianjin,China.Based on the measured groundwater head and building settlement during the pumpin...This study presents a numerical investigation of dewatering-induced settlement and wall deflection during pumping tests in Tianjin,China.Based on the measured groundwater head and building settlement during the pumping test,a three-dimensional liquid-solid coupling model is established by using the finite element method(FEM).The void ratio,hydraulic conductivity,and elastic modulus of each layer are back-calculated through the numerical model.The groundwater drawdown,seepage field,ground settlement,horizontal ground displacement,and diaphragm wall lateral deflection are analyzed using the FEM model.The simulated results demonstrate that(i)the maximum ground settlement outside of the excavation reaches to 82 mm due to the leakage effect of aquitards;(ii)large horizontal displacement occurs in the soil during the pumping test with a maximum value of 28.3 mm,and the installation of the diaphragm wall in the aquifer can reduce the horizontal displacement of the ground;(iii)long-term pumping causes a large lateral deflection of the diaphragm wall,and a maximum value of 23.2 mm occurs at the layer where the screens of the wells are located;and(iv)long-term large-scale pumping should be avoided before excavation.展开更多
Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of th...Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch al between the substrate and the driving layer. It also strongly depends on the elastic mismatch a2 between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on a2 gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.展开更多
A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an up...A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle, a downstream nozzle, an oscillating chamber and two switches. It is experimentally shown that the deflective angle may reach 9.53 degree. The generated pressure fluctuation is very regular and the jet can efficiently increase the ability for breaking and cutting by eliminating the water cushion effect associated with a continuous jet.展开更多
A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and p...A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.展开更多
National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and relia...National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and reliable recovery systems directly improves the safety and operational efficiency of submarines equipped with AUVs.In this paper,based on aerial refueling technology,a cone-shaped recovery system with two different guiding covers(closed structure and frame structure)is applied to the submarine.By taking the Suboff model as the research object,STAR-CCM was used to study the influence of the installation position of the recovery system,and the length of the rigid rod,on the Suboff model.It was found that when the recovery system is installed in the middle and rear of the Suboff model at the same velocity and the same length of the rigid rod,the Suboff model has the good stability and less drag.It experiences the largest drag when being installed in the front of the rigid rod.Moreover,when the recovery system is installed in the front and middle of the rigid rod,the drag increases as its length increases,and the lift decreases as its length increases.Compared with the closed structure guiding cover,the Suboff model will have less drag and better stability when the recovery system uses the frame structure guiding cover.Besides,the deflection and vibration of the rigid rod were also analyzed via mathematical theory.展开更多
In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting di...In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.展开更多
By using the expressions of the field parameters and with the aid of the Orthogonal DesignMethod,we optimized the design of the saddle delection yoke with a ferromagnetic shield.The results ob-tained agree with the pr...By using the expressions of the field parameters and with the aid of the Orthogonal DesignMethod,we optimized the design of the saddle delection yoke with a ferromagnetic shield.The results ob-tained agree with the practical model.It is pointed out that the end ear and the distribution of the fieldparameter B<sub>0</sub>(z)have important effects on the deflection aberrations.An example is given,in which the elec-tron optical properties of the deflection coils having cosine distribution and finite length and that of the de-flection coils having distributed winding are compared.展开更多
The post-Newtonian scheme in multiple systems with post-Newtonian parameters presented by Klioner and Soffel is extended to the post-post-Newtonian (PPN) order for light propagation problem in the solar system. Unde...The post-Newtonian scheme in multiple systems with post-Newtonian parameters presented by Klioner and Soffel is extended to the post-post-Newtonian (PPN) order for light propagation problem in the solar system. Under considering the solar system experiment requirement, a new parameter ε is introduced. This extension does not change the virtue of the scheme on the linear partial differential equations of the potential and vector potential mentioned in previous work. Furthermore, this extension is based on the former work done by Richter and Matzner in one global system theory. As an application, we also consider the deflection of light ray in the global coordinates. And the deflection angle of light ray is obtained with post-Newtonian parameters.展开更多
A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease ...A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease and apparent inhibition constant (K-i) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.展开更多
Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becomi...Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becoming an important social concern to develop and put to practical use simple and efficient health monitoring systems for existing short and medium span (10 - 30 m) bridges. In this paper, one practical solution to the problem for condition assessment of short and medium span bridges was discussed. A vehicle-based measurement with a public bus as part of a public transit system (called “Bus monitoring system”) has been developed to be capable of detecting damage that may affect the structural safety of a bridge from long term vibration measurement data collected while the vehicle (bus) crossed the target bridges. This paper systematically describes how the system has been developed. The bus monitoring system aims to detect the transition from the damage acceleration period, in which the structural safety of an aged bridge declines sharply, to the deterioration period by continually monitoring the bridge of interest. To evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. The verification results thus obtained are also described in this paper. This study also evaluates the sensitivity of “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. As the results, it will be able to make a rational long-term health monitoring system for existing short and mediumspan bridges, and then the system helps bridge administrators to establish the rational maintenance strategies.展开更多
The study of the effect of the gravitational field on the photons, based on the hypothesis of the absolute reference system, demonstrates the origin of the gravitational force. By studying the propagation of a photon ...The study of the effect of the gravitational field on the photons, based on the hypothesis of the absolute reference system, demonstrates the origin of the gravitational force. By studying the propagation of a photon in the gravitational field the change in the estimation of time is determined, resulting from the use of a clock that is affected by the gravitational field. It is proved that in all known experiments, which were carried out in order to confirm the general theory of relativity, the results based on the hypothesis of an absolute reference system agree with the corresponding results of the general theory of relativity, except for the result of the deflection of light in the gravitational field of the sun, where the experimental results confirm the hypothesis of the absolute reference system.展开更多
文摘There are more than one hundred pulse power supplies in the project of HIMM (High Ion Medical Machine).The control protocol of them is unified. But the HVPS (high voltage power supply) for deflecting plate of the beam extracted system is different.The control of HVPS includes the current settings, the status display and the HV turn on/off.
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
基金gratefully the China Scholarship Council for providing a PhD Scholarship(CSC No.201906690049).
文摘The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
文摘The function of dynamic track drawing realized in the ship monitoring system. Based on the function, we could draw the sailing tracks dynamically according to the ship's orientation. Two kernel algorithms are involved during the system developing process, i.e. the algorithms of angular deflection and distance interval value. The practice of system development shows that the proper application of these two algorithms has good effect'in the visualization of sailing track.
文摘The current theory in NF EN 1995-1-1/NA of Eurocode 5, which is based on maximum deflection, has been investigated on softwoods. Therefore, this theory is not adapted for slender glulam beam columns made of tropical hardwood species from the Congo Basin. This maximum deflection is caused by a set of loads applied to the structure. However, Eurocode 5 doesn’t provide how to predict this deflection in case of long-term load for such structures. This can be done by studying load-displacement (P-Δ) behaviour of these structures while taking into account second order effects. To reach this goal, a nonlinear analysis has been performed on a three-dimensional beam column embedded on both ends. Since conducting experimental investigations on large span structural products is time-consuming and expensive especially in developing countries, a numerical model has been implemented using the Newton-Raphson method to predict load-displacement (P-Δ) curve on a slender glulam beam column made of tropical hardwood species. On one hand, the beam has been analyzed without wood connection. On the other hand, the beam has been analyzed with a bolted wood connection and a slotted-in steel plate. The load cases considered include self-weight and a uniformly applied long-term load. Combinations of serviceability limit states (SLS) and ultimate limit states (ULS) have also been considered, among other factors. A finite-element software RFEM 5 has been used to implement the model. The results showed that the use of steel can reduce displacement by 20.96%. Additionally, compared to the maximum deflection provided by Eurocode 5 for softwoods, hardwoods can exhibit an increasing rate of 85.63%. By harnessing the plastic resistance of steel, the bending resistance of wood can be increased by 32.94%.
基金funded by the National Nature Science Foundation of China(NSFC)(Grant No.41807235)funded by“The Pearl River Talent Recruitment Program”in 2019(Grant No.2019CX01G338)Guangdong Province and the Research Funding of Shantou University for New Faculty Member(NTF19024-2019).
文摘This study presents a numerical investigation of dewatering-induced settlement and wall deflection during pumping tests in Tianjin,China.Based on the measured groundwater head and building settlement during the pumping test,a three-dimensional liquid-solid coupling model is established by using the finite element method(FEM).The void ratio,hydraulic conductivity,and elastic modulus of each layer are back-calculated through the numerical model.The groundwater drawdown,seepage field,ground settlement,horizontal ground displacement,and diaphragm wall lateral deflection are analyzed using the FEM model.The simulated results demonstrate that(i)the maximum ground settlement outside of the excavation reaches to 82 mm due to the leakage effect of aquitards;(ii)large horizontal displacement occurs in the soil during the pumping test with a maximum value of 28.3 mm,and the installation of the diaphragm wall in the aquifer can reduce the horizontal displacement of the ground;(iii)long-term pumping causes a large lateral deflection of the diaphragm wall,and a maximum value of 23.2 mm occurs at the layer where the screens of the wells are located;and(iv)long-term large-scale pumping should be avoided before excavation.
基金Project supported by the National Natural Science Foundation of China(No.51175404)
文摘Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch al between the substrate and the driving layer. It also strongly depends on the elastic mismatch a2 between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on a2 gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.
基金Funded by National Natural Science Fund of China(No. 50074035)
文摘A new type jet, the oscillating & deflecting jet, is put forward and its oscillating and deflecting characteristics are investigated. The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle, a downstream nozzle, an oscillating chamber and two switches. It is experimentally shown that the deflective angle may reach 9.53 degree. The generated pressure fluctuation is very regular and the jet can efficiently increase the ability for breaking and cutting by eliminating the water cushion effect associated with a continuous jet.
基金This work was supported by the National Natural Science Foundation of China(No.11922504).
文摘A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.
基金This work was financially supported by the Innovation Fund from Chinese Academy of Sciences(Grant No.CXJJ-17-M130)the Research Fund of the State Key Laboratory of Robotics(Gant No.Y91Z0904).
文摘National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and reliable recovery systems directly improves the safety and operational efficiency of submarines equipped with AUVs.In this paper,based on aerial refueling technology,a cone-shaped recovery system with two different guiding covers(closed structure and frame structure)is applied to the submarine.By taking the Suboff model as the research object,STAR-CCM was used to study the influence of the installation position of the recovery system,and the length of the rigid rod,on the Suboff model.It was found that when the recovery system is installed in the middle and rear of the Suboff model at the same velocity and the same length of the rigid rod,the Suboff model has the good stability and less drag.It experiences the largest drag when being installed in the front of the rigid rod.Moreover,when the recovery system is installed in the front and middle of the rigid rod,the drag increases as its length increases,and the lift decreases as its length increases.Compared with the closed structure guiding cover,the Suboff model will have less drag and better stability when the recovery system uses the frame structure guiding cover.Besides,the deflection and vibration of the rigid rod were also analyzed via mathematical theory.
文摘In this paper the large deflection dynamic problems of Euler beams are investigated. The vibration control equations are derived based on the multibody system method. A numerical procedure for solving the resulting differential algebraic equations is presented on the basis of the Newmark direct integration method combined with the Newton-Raphson iterative method. The sub beams are treated as small deformation in the convected coordinate systems, which can greatly simplify the deformation description. The rigid motions of the sub beams are taken into account through the motions of the convected coordinate systems. Numerical ex- amples are carried out, where results show the effectiveness of the proposed method.
文摘By using the expressions of the field parameters and with the aid of the Orthogonal DesignMethod,we optimized the design of the saddle delection yoke with a ferromagnetic shield.The results ob-tained agree with the practical model.It is pointed out that the end ear and the distribution of the fieldparameter B<sub>0</sub>(z)have important effects on the deflection aberrations.An example is given,in which the elec-tron optical properties of the deflection coils having cosine distribution and finite length and that of the de-flection coils having distributed winding are compared.
基金supported by the National Natural Science Foundation of China (Grant No. 10674099)the National Science Foundation for Young Scientists of China (Grant No. 10925313)the Shandong Provincial Natural Science Foundation,China (GrantNo. ZR2010AQ023)
文摘The post-Newtonian scheme in multiple systems with post-Newtonian parameters presented by Klioner and Soffel is extended to the post-post-Newtonian (PPN) order for light propagation problem in the solar system. Under considering the solar system experiment requirement, a new parameter ε is introduced. This extension does not change the virtue of the scheme on the linear partial differential equations of the potential and vector potential mentioned in previous work. Furthermore, this extension is based on the former work done by Richter and Matzner in one global system theory. As an application, we also consider the deflection of light ray in the global coordinates. And the deflection angle of light ray is obtained with post-Newtonian parameters.
文摘A new analytical method for the determination of urea-urease system based on biochemical reaction heat induced laser beam deflection is presented in this paper. With the method, the Michaelis constant (K-m) of urease and apparent inhibition constant (K-i) of some metal ion inhibitors were measured respectively. This method was also used for the quantitative determination of metal ions with satisfactory result.
文摘Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becoming an important social concern to develop and put to practical use simple and efficient health monitoring systems for existing short and medium span (10 - 30 m) bridges. In this paper, one practical solution to the problem for condition assessment of short and medium span bridges was discussed. A vehicle-based measurement with a public bus as part of a public transit system (called “Bus monitoring system”) has been developed to be capable of detecting damage that may affect the structural safety of a bridge from long term vibration measurement data collected while the vehicle (bus) crossed the target bridges. This paper systematically describes how the system has been developed. The bus monitoring system aims to detect the transition from the damage acceleration period, in which the structural safety of an aged bridge declines sharply, to the deterioration period by continually monitoring the bridge of interest. To evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. The verification results thus obtained are also described in this paper. This study also evaluates the sensitivity of “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. As the results, it will be able to make a rational long-term health monitoring system for existing short and mediumspan bridges, and then the system helps bridge administrators to establish the rational maintenance strategies.
文摘The study of the effect of the gravitational field on the photons, based on the hypothesis of the absolute reference system, demonstrates the origin of the gravitational force. By studying the propagation of a photon in the gravitational field the change in the estimation of time is determined, resulting from the use of a clock that is affected by the gravitational field. It is proved that in all known experiments, which were carried out in order to confirm the general theory of relativity, the results based on the hypothesis of an absolute reference system agree with the corresponding results of the general theory of relativity, except for the result of the deflection of light in the gravitational field of the sun, where the experimental results confirm the hypothesis of the absolute reference system.