期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Comprehensive Review of Experience with the Application of the Mechanical Threshold Stress Model
1
作者 Paul S. Follansbee 《Materials Sciences and Applications》 CAS 2023年第5期299-323,共25页
Accurate prediction of stress-strain behavior of metals as a function of arbitrary temperature and strain rate paths has remained a challenge. The Mechanical Threshold Stress constitutive model is one formalism that h... Accurate prediction of stress-strain behavior of metals as a function of arbitrary temperature and strain rate paths has remained a challenge. The Mechanical Threshold Stress constitutive model is one formalism that has emerged following several decades of research. Vast experience has accumulated with the application of the Mechanical Threshold Stress model over a wide variety of pure metals and alloys. Out of this has arisen common trends across metal systems. The magnitude of activation energies presents one example of this, where these variables consistently increase in magnitude as the obstacle to dislocation motion transitions from short range to long range. Trends in strain hardening are also observed. In Face-Centered Cubic metals the magnitude of strain hardening scales with the stacking fault energy;trends in Body-Centered Cubic metals are less clear. Model parameters derived for over twenty metals and alloys are tabulated. Common trends should guide future application of the MTS model and further model development. 展开更多
关键词 Mechanical Threshold Stress Constitutive Behavior deformation kinetics Strain Hardening Internal State Variable
下载PDF
Static recrystallization behavior of 25CrMo4 mirror plate steel during two-pass hot deformation 被引量:4
2
作者 Peng Zhou Qing-xian Ma 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第2期222-228,共7页
The static recrystallization behavior of 25CrMo4 mirror plate steel has been determined by hot compression testing on a Gleeble 1500 thermal mechanical simulation tester. Compression tests were performed using double ... The static recrystallization behavior of 25CrMo4 mirror plate steel has been determined by hot compression testing on a Gleeble 1500 thermal mechanical simulation tester. Compression tests were performed using double hit schedules at temperatures of 950-- 1 150 ~C, strain rates of 0.01--0.5 s-1 , and recrystallization time of 1--100 s. Results show that the kinetics of static recrystallization and the microstructural evolution were greatly influenced by the deformation parameters (deformation temperature, strain rate and pre strain) and the initial austenite grain size. Based on the experimental results, the kinetics model of static recrystallization has been generated and the comparison between the experimental results and the predicted results has been carried out. It is shown that the predicted results were in good agreement with the experimental results. 展开更多
关键词 Hot deformation Static recrystallization 25CrMo4 kinetics equation Microstructure
原文传递
High-throughput physical phenotyping of cell differentiation 被引量:1
3
作者 Jonathan Lin Donghyuk Kim +5 位作者 Henry T.Tse Peter Tseng Lillian Peng Manjima Dhar Saravanan Karumbayaram Dino Di Carlo 《Microsystems & Nanoengineering》 EI CSCD 2017年第1期316-322,共7页
In this report,we present multiparameter deformability cytometry(m-DC),in which we explore a large set of parameters describing the physical phenotypes of pluripotent cells and their derivatives.m-DC utilizes microflu... In this report,we present multiparameter deformability cytometry(m-DC),in which we explore a large set of parameters describing the physical phenotypes of pluripotent cells and their derivatives.m-DC utilizes microfluidic inertial focusing and hydrodynamic stretching of single cells in conjunction with high-speed video recording to realize high-throughput characterization of over 20 different cell motion and morphology-derived parameters.Parameters extracted from videos include size,deformability,deformation kinetics,and morphology.We train support vector machines that provide evidence that these additional physical measurements improve classification of induced pluripotent stem cells,mesenchymal stem cells,neural stem cells,and their derivatives compared to size and deformability alone.In addition,we utilize visual interactive stochastic neighbor embedding to visually map the high-dimensional physical phenotypic spaces occupied by these stem cells and their progeny and the pathways traversed during differentiation.This report demonstrates the potential of m-DC for improving understanding of physical differences that arise as cells differentiate and identifying cell subpopulations in a label-free manner.Ultimately,such approaches could broaden our understanding of subtle changes in cell phenotypes and their roles in human biology. 展开更多
关键词 cell mechanics deformation deformation kinetics morphology physical phenotype stem cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部