Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersio...Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri.展开更多
With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be bui...With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be built on steep slopes. Choosing viaducts or half-bridges on high-steep slopes is not only conducive to the protection of the surrounding environment, but also conducive to the stability of the slope. Bridges usually choose the form of pile </span><span style="font-family:Verdana;">foundation-high pier bridge. This paper uses numerical simulation to study and analyze the bridge pile foundation of the slope section. Relying on actual</span><span style="font-family:Verdana;"> engineering, use the finite element software ABAQUS6.14 to establish a three-dimensional finite element model to study the bearing mechanism and mechanical characteristics of the pile foundation under vertical load, horizontal load and inclined load, discuss the influence of the nature of the soil around the pile and the stiffness of the pile body on the deformation and internal force of the bridge pile foundation in the slope section. The analysis results show that the horizontal load has a great influence on the horizontal displacement of the pile, but has a small influence on the vertical displacement, and the vertical load is just the opposite. Inclined load has obvious “p-Δ” effect. The increase in soil elastic modulus and pile stiffness will reduce the displacement of the pile foundation, but after reaching a certain range, the displacement of the pile foundation will tend to be stable. Therefore, in actual engineering, if the displacement of the pile foundation fails to meet the requirements, the hardness of the soil and the stiffness of the pile can be appropriately increased, but not blindly.展开更多
In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step fu...In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.展开更多
The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayl...The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.展开更多
An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the gener...An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method,a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.展开更多
文摘Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri.
文摘With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be built on steep slopes. Choosing viaducts or half-bridges on high-steep slopes is not only conducive to the protection of the surrounding environment, but also conducive to the stability of the slope. Bridges usually choose the form of pile </span><span style="font-family:Verdana;">foundation-high pier bridge. This paper uses numerical simulation to study and analyze the bridge pile foundation of the slope section. Relying on actual</span><span style="font-family:Verdana;"> engineering, use the finite element software ABAQUS6.14 to establish a three-dimensional finite element model to study the bearing mechanism and mechanical characteristics of the pile foundation under vertical load, horizontal load and inclined load, discuss the influence of the nature of the soil around the pile and the stiffness of the pile body on the deformation and internal force of the bridge pile foundation in the slope section. The analysis results show that the horizontal load has a great influence on the horizontal displacement of the pile, but has a small influence on the vertical displacement, and the vertical load is just the opposite. Inclined load has obvious “p-Δ” effect. The increase in soil elastic modulus and pile stiffness will reduce the displacement of the pile foundation, but after reaching a certain range, the displacement of the pile foundation will tend to be stable. Therefore, in actual engineering, if the displacement of the pile foundation fails to meet the requirements, the hardness of the soil and the stiffness of the pile can be appropriately increased, but not blindly.
文摘In this paper, based on the idea of finite element method, the initial parametric method in bending, problem of a beam is extended to analyse the bar-system structure by employing Dirac function and llcavisidc step function.Then a new method for analysing the internal forces and deformations of bar-system structure in space is suggested by improving the mixed method in statically indeterminate structure.The inferred process and obtained answer will be more succinct and accurate when the problem of internal forces and deformations of bar-system structure is analysed by using the new method provided in this paper.
基金Project(51275530)supported by the National Natural Science Foundation of China
文摘The theoretical model of axial ultrasonic vibration grinding force is built on the basis of a mathematical model of cutting deforming force deduced from the assumptions of thickness of the undeformed debris under Rayleigh distribution and a mathematical model of friction based on the theoretical analysis of relative sliding velocity of abrasive and workpiece. Then, the coefficients of the ultrasonic vibration grinding force model are calculated through analysis of nonlinear regression of the theoretical model by using MATLAB, and the law of influence of grinding depth, workpiece speed, frequency and amplitude of the mill on the grinding force is summarized after applying the model to analyze the ultrasonic grinding force. The result of the above-mentioned law shows that the grinding force decreases as frequency and amplitude increase, while increases as grinding depth and workpiece speed increase; the maximum relative error of prediction and experimental values of the normal grinding force is 11.47% and its average relative error is 5.41%; the maximum relative error of the tangential grinding force is 10.14% and its average relative error is 4.29%. The result of employing regression equation to predict ultrasonic grinding force approximates to the experimental data, therefore the accuracy and reliability of the model is verified.
基金the National Science Foundation of China for Distinguished Young Scholars(51925505)led by Yingguang Lifunding was obtained from the National Natural Science Foundation of China(52175467 and 51775278)led by Changqing Liu.
文摘An exact-designed mesh shape with favorable surface accuracy is of practical significance to the performance of large cable-network antenna reflectors. In this study, a novel design approach that could guide the generation of exact spatial parabolic mesh configurations of such reflector was proposed. By incorporating the traditional force density method with the standard finite element method, this proposed approach had taken the deformation effects of flexible ring truss supports into consideration, and searched for the desired mesh shapes that can satisfy the requirement that all the free nodes are exactly located on the objective paraboloid. Compared with the conventional design method,a remarkable improvement of surface accuracy in the obtained mesh shapes had been demonstrated by numerical examples. The present work would provide a helpful technical reference for the mesh shape design of such cable-network antenna reflector in engineering practice.