期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deformation Forecasting of Huangtupo Riverside Landslide in the Case of Frequent Microseisms 被引量:5
1
作者 Jiwei Jiang Wei Xiang +1 位作者 Wei Zhang Jiajun Pan 《Journal of Earth Science》 SCIE CAS CSCD 2016年第1期160-166,共7页
Ever since the impoundment of Three Gorges Reservoir(TGR), the seismicity in head region of TGR has increased significantly. Coupled with wide fluctuation of water level each year, it becomes more important to study... Ever since the impoundment of Three Gorges Reservoir(TGR), the seismicity in head region of TGR has increased significantly. Coupled with wide fluctuation of water level each year, it becomes more important to study the deformation forecasting of landslides beside TGR. As a famous active landslide beside TGR, Huangtupo riverside landslide is selected for a case study. Based on long term water level fluctuation and seismic monitoring, three typical adverse conditions are determined. With the established 3D numerical landslide model, seepage-dynamic coupling calculation is conducted under the seismic intensity of V degree. Results are as follows: 1. the dynamic water pressure formed by water level fluctuation will intensify the deformation of landslide; 2. under seismic load, the dynamic hysteresis is significant in defective geological bodies, such as weak layer and slip zone soil, because of much higher damping ratios, the seismic accelerate would be amplified in these elements; 3. microseisms are not intense enough to cause the landslide instability suddenly, but long term deformation accumulation effect of landslide should be paid more attention; 4. in numerical simulation, the factors of unbalance force and excess pore pressure also can be used in forecasting deformation tendency of landslide. 展开更多
关键词 LANDSLIDE frequent microseisms deformation forecasting multi-field coupling.
原文传递
Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations
2
作者 Zhengjing Ma Gang Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期960-982,共23页
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict... Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors. 展开更多
关键词 Geohazards Landslide deformation forecasting Landslide predictability Knowledge infused deep learning interpretable machine learning Attention mechanism Transformer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部