Stress-rupture properties of a Ni-base Re-containing single-crystal superalloy with three orientations have been tested under 900℃/445 MPa.An obvious anisotropy of stress-rupture property is attributed to orientation...Stress-rupture properties of a Ni-base Re-containing single-crystal superalloy with three orientations have been tested under 900℃/445 MPa.An obvious anisotropy of stress-rupture property is attributed to orientation reliant deformation microstructure.The good strength in[001]orientation is attributed to the rapid multiplication of dislocations active in horizontal channels and laterγ'cutting via dislocations pair coupled with anti-phase boundary.The microtwin formation largely limits the strength and plasticity as a result of the continuous shearing acrossγ/γ'microstructure by{111}112 slip activated in[011]orientation.The property in[111]orientation results mainly from the lateral cross-slip movements of the screw dislocations within connected matrix channels as well as the precipitate shearing by coplanar dislocations.Microcracks all initially originate from the interdendritic micropores in three orientations.The critical temperature of stress-rupture anisotropy could be increased by a high level of refractory solutes especially Re.展开更多
Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (abo...Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect.展开更多
The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator...The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al;Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.展开更多
Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is...Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is found that there are two kinds of recrystallizationmechanisms: continuous coarsening (CC) and discontinuous coarsening (DC). The latter can be dividedinto coarsening mainly driven by stored deformation energy at colony boundaries and slip bands andthe one mainly driven by boundary energy in the area with little deformation. It is shown that theaddition of Cu can retard the nucleation of coarsening cells and their growth. X-Ray diffractionanalysis indicated the metastable phase CuZn_4 transformed into equilibrium phase A;_4Cu_3Zn duringthe heating process.展开更多
Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study th...Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study the extraction of key failure parameters. This review summarizes the recent progresses in the study of the internal movement of granular materials, inhomogeneous deformation of composite materials, and stress intensity factor around a crack front in static and fatigue states using DVC. To elaborate on the technique's potential, we discussed the accuracy and efficiency of the algorithm and the acquisition of real microstructure data within the material under a complex environment.展开更多
This study examined the mechanical properties, springback behavior from three-point bending loading–unloading tests and biocompatibility from human osteoblast cell adhesion and proliferation experiments in Ti-15Mo al...This study examined the mechanical properties, springback behavior from three-point bending loading–unloading tests and biocompatibility from human osteoblast cell adhesion and proliferation experiments in Ti-15Mo alloy with different microstructures. The springback ratio increased after the appearance of deformation microstructures including {332} < 113 > twins and dislocations, due to the increased bending strength and unchanged Young’s modulus. By contrast, the change in springback ratio was dependent on the competing effect of the simultaneous increase in bending strength and Young’s modulus after phase transformation, namely, the isothermal ω-phase formation. Good cell adhesion and proliferation were observed on the alloy surface, and they were not significantly affected by the deformation twins, dislocations and isothermal ω-phase.The diversity of deformation and phase transformation microstructures made it possible to control the springback behavior effectively while keeping the biocompatibility of the alloy as an implant rod used for spinal fixation devices.展开更多
Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain ...Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.展开更多
In this paper we examine the effect on the determination of boundary length per unit area of the stepped nature of boundaries in orientation maps derived from electron back-scatter diffraction data.A correction factor...In this paper we examine the effect on the determination of boundary length per unit area of the stepped nature of boundaries in orientation maps derived from electron back-scatter diffraction data.A correction factor is derived for isotropic microstructures.Two measures based on length per unit area for the determination of the cross-link boundary spacing in high strain deformation microstructures are then compared.A geometric method based on subtraction of the contribution to the length per area of the lamellar boundaries gives the best results,though in some cases a method based on boundary misorientation angles may be preferred.展开更多
Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffract...Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and electron probe microanalysis(EPMA).The hornblendes are σ and δ type porphyroclasts with the new-born needle shaped grains as their tails.The analysis of lattice preferred orientation(LPO) of both the porphyroclasts and the new-born grains shows that the main slip system of the deformed hornblende is(100)<001>,suggesting that the fabric characteristics of new-born grains inherit that of porphyroclasts.Sub-microstructures show the porphyroclast core is dominated by dislocation tangle,little or no dislocations in the new-born grains,and the subgrains confined by dislocations in the transition zone between porphyroclasts and new-born grains.By using plagioclase-hornblende geothermometry and hornblende geobarometry,the estimated temperature and pressure of porphyroclasts are 675.3-702.9℃ and 0.29-0.41 GPa and those of new-born grains are 614.1-679.0℃ and 0.11-0.31 GPa.The bulging recrystallization is summarized as deformation mechanisms of hornblende by the discussions of the microstructures,EBSD fabric,sub-microstructures,and the deformed temperature and pressure.展开更多
Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to...Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.展开更多
An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The ...An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200–1100°C/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction.展开更多
Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated t...Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated that average grain size became finer with the increasing number of upsetting and stretching.Especially,the size of stretching three times with upsetting twice had the most remarkable effect on refinement,and the size was only 27.36%of the original one.Moreover,the stress model was integrated into the software and finite element models were established.Simulation results demonstrated that the strain at center point of workpiece was far larger than critical strain value in each process,so that dynamic recrystallization(DRX) occurred in each workpiece,which implied DRX could occur for several times with the increasing number of upsetting and stretching,and uniform finer microstructure would be obtained.However,the results also showed that higher temperature was an unfavorable factor for grain refinement,so the times of heating should be limited for workpiece,and as many forging processes as possible should be finished in once heating.展开更多
The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to i...The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.展开更多
Microstructural evolution of a refractory tantalum-tungsten alloy(Ta-4%W)after cold rolling from small to large von-Mises strains(0.12-2.7)was quantitatively studied using transmission electron microscopy.Grain subdiv...Microstructural evolution of a refractory tantalum-tungsten alloy(Ta-4%W)after cold rolling from small to large von-Mises strains(0.12-2.7)was quantitatively studied using transmission electron microscopy.Grain subdivision was observed to take place at two levels.Geometrically necessary boundaries nearly paralleling to slip planes enclosed volumes further divided by diffuse cells and by remnants of Taylor lattices.With increasing strain,the diffuse cells evolved into clear incidental dislocation boundaries enclosing cells,while the Taylor lattices disappeared.Grain subdivision was thus intermediate between those observed in cell forming and in non-cell forming alloys.Meanwhile,the average misorientation angle across all boundaries increased while the average boundary spacing decreased.Distributions of the microstructural parameters at each strain level were found to exhibit universal scaling laws.The microstructural evolution was found closely linking to the observed high strength and strain hardening of this alloy.Based on measured microstructural parameters,the flow stress was calculated utilizing linearly addition of the strengthening by solutes,incidental dislocation boundaries(Taylor strengthening)and geometrically necessary boundaries(Hall-Petch equation).The relative contribution of each strength mechanism evolved with increasing strain and with microstructural evolution:solutes and friction stress dominated at small strains while boundaries dominated at larger strains.Calculated strengths were in close agreement with experimental tension tests and demonstrated an unexpectedly high and continuous parabolic hardening without transition across this large strain range.展开更多
The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination ...The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels.展开更多
The evolution of the microstructure and texture in copper has been studied during repetitive extrusionupsetting(REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It i...The evolution of the microstructure and texture in copper has been studied during repetitive extrusionupsetting(REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It is found that the texture is significantly altered by each deformation pass. A duplex 001 + 111 fiber texture with an increased 111 component is observed after each extrusion pass,whereas the 110 fiber component dominates the texture after each upsetting pass. During REU, the microstructure is refined by deformation-induced boundaries. The average cell size after a total strain of 4.7 is measured to be ~0.3 μm. This refined microstructure is unstable at room temperature as is evident from the presence of a small number of recrystallized grains in the deformed matrix. Pronounced recrystallization took place during annealing at 200?C for 1 h with recrystallized grains developing predominantly in high misorientation regions. At 350?C the microstructure is fully recrystallized with an average grain size of only 2.3 μm and a very weak crystallographic texture. This REU-processed and subsequently annealed material is considered to be potentially suitable for using as a material for sputtering targets.展开更多
Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in ...Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.展开更多
The proton-irradiated 308L stainless steel weld metal was strained by using constant extension rate tensile testing in simulated PWR primary water, and its deformation microstructures and irradiation assisted stress c...The proton-irradiated 308L stainless steel weld metal was strained by using constant extension rate tensile testing in simulated PWR primary water, and its deformation microstructures and irradiation assisted stress corrosion cracking(IASCC) behavior were investigated. The results suggest that the irradiation significantly increases the SCC susceptibility of 308L weld metal and causes various deformation microstructures including lathy faulted planes, dislocation channels and deformation twins in austenite and atomic plane rotation in δ-ferrite. The propagation of intergranular IASCC cracks is closely related to the location of the crack tip. For the crack tip in the specimen matrix interior, localized deformation is likely the key factor responsible for the crack growth. For the crack tip close to the specimen surface, however, localized corrosion along the grain boundary rather than the localized deformation appears to dominate the crack propagation. Unlike the intergranular cracks, the IASCC cracks along the δ-ferrite/austenite phase boundary can initiate either by crack initiation at the phase boundary or by crack propagation from the grain boundary. In both cases, the cracked phase boundaries contain a large number of carbides and are severely corroded, but no deformation microstructures are observed, which implies that the localized corrosion may play an important role in the IASCC along the phase boundary. In addition, δ-ferrite can retard the IASCC crack propagation along the grain boundary, which is probably related to the reduction of localized deformation by δ-ferrite.展开更多
In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron micros...In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), energy dispersive spectrum(EDS) and tensile testing.The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization.The second phases were dynamic precipitated and distributed more dispersively through extrusion.W-Phases(Mg3Zn3Y2) were twisted and broken, while I-Phases(Mg3Zn6Y) were spheroidized by deformation.Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties.The tensile strength and elongation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9% respectively which were improved greatly compared with those of as-cast alloy.The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.展开更多
Introducing a bimodal grain-size distribution has been demonstrated an efficient strategy for fabricating high-strength and ductile metallic materials, where fine grains provide strength, while coarse grains enable st...Introducing a bimodal grain-size distribution has been demonstrated an efficient strategy for fabricating high-strength and ductile metallic materials, where fine grains provide strength, while coarse grains enable strain hardening and hence decent ductility. Over the last decades, research activities in this area have grown enormously, including interesting results onfcc Cu, Ni and Al-Mg alloys as well as steel and Fe alloys via various thermo-mechanical processing approaches. However, investigations on bimodal Mg and other hcp metals are relatively few. A brief overview of the available approaches based on thermo- mechanical processing technology in producing bimodal microstructure for various metallic materials is given, along with a summary of unusual mechanical properties achievable by bimodality, where focus is placed on the microstructure-mechanical properties and relevant mechanisms. In addition, key factors that influencing bimodal strategies, such as compositions of starting materials and processing parameters, together with the challenges this research area facing, are identified and discussed briefly.展开更多
基金financially supported by the National Key R&D Program of China(No.2017YFA0700704)the National Natural Science Foundation of China(No.51871221)the National Science and Technology Major Project(No.2017-VI-0002-0072)。
文摘Stress-rupture properties of a Ni-base Re-containing single-crystal superalloy with three orientations have been tested under 900℃/445 MPa.An obvious anisotropy of stress-rupture property is attributed to orientation reliant deformation microstructure.The good strength in[001]orientation is attributed to the rapid multiplication of dislocations active in horizontal channels and laterγ'cutting via dislocations pair coupled with anti-phase boundary.The microtwin formation largely limits the strength and plasticity as a result of the continuous shearing acrossγ/γ'microstructure by{111}112 slip activated in[011]orientation.The property in[111]orientation results mainly from the lateral cross-slip movements of the screw dislocations within connected matrix channels as well as the precipitate shearing by coplanar dislocations.Microcracks all initially originate from the interdendritic micropores in three orientations.The critical temperature of stress-rupture anisotropy could be increased by a high level of refractory solutes especially Re.
基金This work was supported by Alexander von Humboldt Foundation of Germany and the National Natural Science Foundation of China under the grant number of
文摘Hardness of the TiB2/7075 composite increased with increasing deformation temperature. In the annealed TiB2/7075 composite, a great amount of fiber-like MgZn2 phases (about 1 mum in length) and small MgZn2 phases (about 100 nm in size) were precipitated nearby the grain boundaries where the TiB2 particles exist. After deformation at 300 degreesC, some of the large precipitates and all the small precipitates in these area dissolved into the matrix, meanwhile, fine precipitates were formed in grains. After deformation at 450 degreesC, all the precipitates in the annealed composite dissolved into the matrix, and new phases were precipitated in grains. The dissolution of the large fiber-like precipitate makes the saturation level of the matrix increased and leads to an increased solution hardening and natural aging, which contribute much to the hardening effect.
基金Sichuan Provincial Development and Reform Commission for funding this work by Panxi Strategic Resources Innovation Development Fund (2015)the department of Science and Technology of Sichuan Province (2015GZ0052)
文摘The main goal of this study is to investigate the microstructure and electrical properties of Al–Zr–La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al;Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.
文摘Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is found that there are two kinds of recrystallizationmechanisms: continuous coarsening (CC) and discontinuous coarsening (DC). The latter can be dividedinto coarsening mainly driven by stored deformation energy at colony boundaries and slip bands andthe one mainly driven by boundary energy in the area with little deformation. It is shown that theaddition of Cu can retard the nucleation of coarsening cells and their growth. X-Ray diffractionanalysis indicated the metastable phase CuZn_4 transformed into equilibrium phase A;_4Cu_3Zn duringthe heating process.
基金supported by the National Natural Science Foundation of China (11722221, 11272305, and 11472265)the National Key Research and Development Program of China (2017YFA0403800 and 2017YFB0702000)the Anhui Provincial Natural Science Foundation (1508085MA17)
文摘Characterizing material 3D deformation and damage is a key challenge in mechanical research. Digital volume correlation (DVC), as a tool for quantifying the internal mechanical response, can comprehensively study the extraction of key failure parameters. This review summarizes the recent progresses in the study of the internal movement of granular materials, inhomogeneous deformation of composite materials, and stress intensity factor around a crack front in static and fatigue states using DVC. To elaborate on the technique's potential, we discussed the accuracy and efficiency of the algorithm and the acquisition of real microstructure data within the material under a complex environment.
基金supported by the National Natural Science Foundation of China(No.52071051)。
文摘This study examined the mechanical properties, springback behavior from three-point bending loading–unloading tests and biocompatibility from human osteoblast cell adhesion and proliferation experiments in Ti-15Mo alloy with different microstructures. The springback ratio increased after the appearance of deformation microstructures including {332} < 113 > twins and dislocations, due to the increased bending strength and unchanged Young’s modulus. By contrast, the change in springback ratio was dependent on the competing effect of the simultaneous increase in bending strength and Young’s modulus after phase transformation, namely, the isothermal ω-phase formation. Good cell adhesion and proliferation were observed on the alloy surface, and they were not significantly affected by the deformation twins, dislocations and isothermal ω-phase.The diversity of deformation and phase transformation microstructures made it possible to control the springback behavior effectively while keeping the biocompatibility of the alloy as an implant rod used for spinal fixation devices.
基金Projects(51261020,51164030)supported by the National Natural Science Foundation of ChinaProject(GF201401007)supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,China
文摘Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.
基金Supported by the National Natural Science Foundation of China(No.50371041 and No.50571049)
文摘In this paper we examine the effect on the determination of boundary length per unit area of the stepped nature of boundaries in orientation maps derived from electron back-scatter diffraction data.A correction factor is derived for isotropic microstructures.Two measures based on length per unit area for the determination of the cross-link boundary spacing in high strain deformation microstructures are then compared.A geometric method based on subtraction of the contribution to the length per area of the lamellar boundaries gives the best results,though in some cases a method based on boundary misorientation angles may be preferred.
基金supported by the National Natural Science Foundation of China (Grant No.40772133)
文摘Multiple methods were applied to study the deformation characteristics of hornblende in Archean plagioamphibolite mylonite from the Western Hills(Beijing),including optical microscopy(OM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),and electron probe microanalysis(EPMA).The hornblendes are σ and δ type porphyroclasts with the new-born needle shaped grains as their tails.The analysis of lattice preferred orientation(LPO) of both the porphyroclasts and the new-born grains shows that the main slip system of the deformed hornblende is(100)<001>,suggesting that the fabric characteristics of new-born grains inherit that of porphyroclasts.Sub-microstructures show the porphyroclast core is dominated by dislocation tangle,little or no dislocations in the new-born grains,and the subgrains confined by dislocations in the transition zone between porphyroclasts and new-born grains.By using plagioclase-hornblende geothermometry and hornblende geobarometry,the estimated temperature and pressure of porphyroclasts are 675.3-702.9℃ and 0.29-0.41 GPa and those of new-born grains are 614.1-679.0℃ and 0.11-0.31 GPa.The bulging recrystallization is summarized as deformation mechanisms of hornblende by the discussions of the microstructures,EBSD fabric,sub-microstructures,and the deformed temperature and pressure.
基金financially supported by the National Natural Science Foundation of China (Nos.51175427 and 51205317)the Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology of China (No.P2014-005)+1 种基金the Marie Curie International Research Staff Exchange Scheme within the 7th EC Framework Programme (FP7) (No.318968)the Programme of Introducing Talents of Discipline to Universities (No.B08040)
文摘Temperature rise is a significant factor influencing microstructure during(α+β) deformation of TA15 titanium alloy.An experiment was designed to explore microstructure evolution induced by temperature rise due to deformation heat.The experiment was carried out in(α+β) phase field at typical temperature rise rates.The microstructures of the alloy under different temperature rise rates were observed by scanning electron microscopy(SEM).It is found that the dissolution rate of primary equiaxed a phase increases with the increase in both temperature and temperature rise rate.In the same temperature range,the higher the temperature rise rate is,the larger the final content and grain size of primary equiaxed a phase are due to less dissolution time.To quantitatively depict the evolution behavior of primary equiaxed a phase under any temperature rise rates,the dissolution kinetics of primary equiaxed a phase were well described by a diffusion model.The model predictions,including content and grain size of primary equiaxed a phase,are in good agreement with experimental observations.The work provides an important basis for the prediction and control of microstructure during hot working of titanium alloy.
基金the research board of the Sharif University of Technology for financial support and the provision of the research facilities used in this work
文摘An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200–1100°C/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction.
基金the National Science and Technology Major Project of China(No.2012ZX04012-011-02)the National Basic Research Program(973)of China(No.2011CB012903)
文摘Five forging experiments were designed and conducted to investigate the effect of process parameters on microstructure evolution during hot deformation for X12CrMoWVNbN10-1-1 steel.The experimental results indicated that average grain size became finer with the increasing number of upsetting and stretching.Especially,the size of stretching three times with upsetting twice had the most remarkable effect on refinement,and the size was only 27.36%of the original one.Moreover,the stress model was integrated into the software and finite element models were established.Simulation results demonstrated that the strain at center point of workpiece was far larger than critical strain value in each process,so that dynamic recrystallization(DRX) occurred in each workpiece,which implied DRX could occur for several times with the increasing number of upsetting and stretching,and uniform finer microstructure would be obtained.However,the results also showed that higher temperature was an unfavorable factor for grain refinement,so the times of heating should be limited for workpiece,and as many forging processes as possible should be finished in once heating.
基金Funded by National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The main objective of this paper is to evaluate the effects of asphalt concrete types on the microstructural characteristics at high-temperature. Suspend-dense structure and Skeleton-dense structure were selected to investigate the deformation of pavement at meso-scale. The internal microstructures of typical asphalt concretes, AC, SUP and SMA, were scanned by X-ray CT device, and microstructural changes before and after high-temperature damage were researched by digital image processing. Adaptive threshold segmentation algorithm(ATSA) based on image radius was developed and utilized to obtain the binary images of aggregates, air-voids and asphalt mastic. Then the shape and distribution of air-voids and aggregates were analyzed. The results show that the ATSA can distinguish the target and background effectively. Gradation and coarse aggregate size of asphalt mixtures have an obvious influence on the distribution of air-voids. The movements of aggregate particles are complex and aggregates with elliptic sharp show great rotation. The effect of gradation on microstructure during high-temperature damage promotes the research about the failure mechanism of asphalt concrete pavement.
基金financially supported by the National Natural Science Foundation of China(Nos.52071038,51421001)support from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(ERC Advanced grant M4D/grant agreement number 788567)for part of the workthe support of the“111 Project”(B16007)by the Ministry of Education and the State Administration of Foreign Experts Affairs of China。
文摘Microstructural evolution of a refractory tantalum-tungsten alloy(Ta-4%W)after cold rolling from small to large von-Mises strains(0.12-2.7)was quantitatively studied using transmission electron microscopy.Grain subdivision was observed to take place at two levels.Geometrically necessary boundaries nearly paralleling to slip planes enclosed volumes further divided by diffuse cells and by remnants of Taylor lattices.With increasing strain,the diffuse cells evolved into clear incidental dislocation boundaries enclosing cells,while the Taylor lattices disappeared.Grain subdivision was thus intermediate between those observed in cell forming and in non-cell forming alloys.Meanwhile,the average misorientation angle across all boundaries increased while the average boundary spacing decreased.Distributions of the microstructural parameters at each strain level were found to exhibit universal scaling laws.The microstructural evolution was found closely linking to the observed high strength and strain hardening of this alloy.Based on measured microstructural parameters,the flow stress was calculated utilizing linearly addition of the strengthening by solutes,incidental dislocation boundaries(Taylor strengthening)and geometrically necessary boundaries(Hall-Petch equation).The relative contribution of each strength mechanism evolved with increasing strain and with microstructural evolution:solutes and friction stress dominated at small strains while boundaries dominated at larger strains.Calculated strengths were in close agreement with experimental tension tests and demonstrated an unexpectedly high and continuous parabolic hardening without transition across this large strain range.
基金the China National Funds for Distinguished Young Scientists(Grant No.51325401)the National Natural Science Foundation of China(Grant No.51474156 and U1660201)the National High Technology Research and Development Program of China(Grant No.2015AA042504)for grant and financial support
文摘The austenitic heat resistant-steels have been considered as important candidate materials for advanced supercritical boilers, nuclear reactors, super heaters and chemical reactors, due to their favorable combination of high strength, corrosion resistance, perfect mechanical properties, workability and low cost.Since the precipitation behavior of the steels during long-term service at elevated temperature would lead to the deterioration of mechanical properties, it is essential to clarify the evolution of secondary phases in the microstructure of the steels. Here, a summary of recent progress in the precipitation behavior and the coarsening mechanism of various precipitates during aging in austenitic steels is made. Various secondary phases are formed under service conditions, like MX carbonitrides, M_(23)C_6 carbides, Z phase, sigma phase and Laves phase. It is found that the coarsening rate of M_(23)C_6 carbides is much higher than that of MX carbonitrides. In order to understand the thermal deformation mechanism, a constitutive equation can be established, and thus obtained processing maps are beneficial to optimizing thermal processing parameters, leading to improved thermal processing properties of steels.
基金supported by the Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2015jcyj BX0115)support of the “111” Project (B16007) by the Ministry of Education and the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos. 51471039, 51421001)
文摘The evolution of the microstructure and texture in copper has been studied during repetitive extrusionupsetting(REU) to a total von Mises strain of 4.7 and during subsequent annealing at different temperatures. It is found that the texture is significantly altered by each deformation pass. A duplex 001 + 111 fiber texture with an increased 111 component is observed after each extrusion pass,whereas the 110 fiber component dominates the texture after each upsetting pass. During REU, the microstructure is refined by deformation-induced boundaries. The average cell size after a total strain of 4.7 is measured to be ~0.3 μm. This refined microstructure is unstable at room temperature as is evident from the presence of a small number of recrystallized grains in the deformed matrix. Pronounced recrystallization took place during annealing at 200?C for 1 h with recrystallized grains developing predominantly in high misorientation regions. At 350?C the microstructure is fully recrystallized with an average grain size of only 2.3 μm and a very weak crystallographic texture. This REU-processed and subsequently annealed material is considered to be potentially suitable for using as a material for sputtering targets.
基金Item Sponsored by Research Fund for the Central Universities of China(N130607002)National Natural Science Foundation of China(51174057,51274062)Research Fund for the Doctoral Program of Higher Education of China(20130042110040)
文摘Microstructural evolution and mechanical properties of cryogenic rolled Fe-36Ni steel were investigated. The annealed Fe-36Ni steel was rolled at cryogenic temperature( 123-173 K) with 20%- 90% rolling reduction in thickness.The deformation process was accompanied by twinning at cryogenic temperature,and the mean thickness of deformation twins was about 200 nm with 20% rolling reduction. When the rolling reduction was above 40%,twinning was suppressed due to the stress concentration in the tested steel. Deformation microstructure of Fe-36Ni steel consisted of both twin boundaries and dislocations by cryogenic rolling( CR),while it only contained dislocations after rolling at room temperature( RT). The tensile strength of Fe-36Ni steel was improved to 930 MPa after 90% reduction at cryogenic temperature,while the tensile strength after 90% reduction at RT was only 760 MPa. More dislocations could be produced as the nucleation sites of recrystallization during CR process.
基金financially supported by the Jiangsu Natural Science Foundation (No. BK20191178)the National Natural Science Foundation of China (No. 52071018)the China Postdoctoral Science Foundation (No. 2021M692018)。
文摘The proton-irradiated 308L stainless steel weld metal was strained by using constant extension rate tensile testing in simulated PWR primary water, and its deformation microstructures and irradiation assisted stress corrosion cracking(IASCC) behavior were investigated. The results suggest that the irradiation significantly increases the SCC susceptibility of 308L weld metal and causes various deformation microstructures including lathy faulted planes, dislocation channels and deformation twins in austenite and atomic plane rotation in δ-ferrite. The propagation of intergranular IASCC cracks is closely related to the location of the crack tip. For the crack tip in the specimen matrix interior, localized deformation is likely the key factor responsible for the crack growth. For the crack tip close to the specimen surface, however, localized corrosion along the grain boundary rather than the localized deformation appears to dominate the crack propagation. Unlike the intergranular cracks, the IASCC cracks along the δ-ferrite/austenite phase boundary can initiate either by crack initiation at the phase boundary or by crack propagation from the grain boundary. In both cases, the cracked phase boundaries contain a large number of carbides and are severely corroded, but no deformation microstructures are observed, which implies that the localized corrosion may play an important role in the IASCC along the phase boundary. In addition, δ-ferrite can retard the IASCC crack propagation along the grain boundary, which is probably related to the reduction of localized deformation by δ-ferrite.
基金Project supported by General Program of Liaoning Province Committee of Education(L2012035)Liaoning Province Science and Technology Plan(2013201018)Liaoning Province University Innovation Team Support Plan
文摘In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), energy dispersive spectrum(EDS) and tensile testing.The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization.The second phases were dynamic precipitated and distributed more dispersively through extrusion.W-Phases(Mg3Zn3Y2) were twisted and broken, while I-Phases(Mg3Zn6Y) were spheroidized by deformation.Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties.The tensile strength and elongation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9% respectively which were improved greatly compared with those of as-cast alloy.The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.
基金financially supported by the National Natural Science Foundation of China (Nos. 51501069, 51671093 and 51625402)Partial financial support came from the Science and Technology Development Program of Jilin Province (Nos. 20160519002JH and 20170520124JH)+1 种基金the Chang Bai Mountain Scholars Program (2013014)the talented youth lift project of Jilin province
文摘Introducing a bimodal grain-size distribution has been demonstrated an efficient strategy for fabricating high-strength and ductile metallic materials, where fine grains provide strength, while coarse grains enable strain hardening and hence decent ductility. Over the last decades, research activities in this area have grown enormously, including interesting results onfcc Cu, Ni and Al-Mg alloys as well as steel and Fe alloys via various thermo-mechanical processing approaches. However, investigations on bimodal Mg and other hcp metals are relatively few. A brief overview of the available approaches based on thermo- mechanical processing technology in producing bimodal microstructure for various metallic materials is given, along with a summary of unusual mechanical properties achievable by bimodality, where focus is placed on the microstructure-mechanical properties and relevant mechanisms. In addition, key factors that influencing bimodal strategies, such as compositions of starting materials and processing parameters, together with the challenges this research area facing, are identified and discussed briefly.