The authors first give the definition of degenerate weakly (K1,K2)-quasiregular mappings using the technique of exterior power and exterior differential forms, and then, using the method of McShane extension, a usef...The authors first give the definition of degenerate weakly (K1,K2)-quasiregular mappings using the technique of exterior power and exterior differential forms, and then, using the method of McShane extension, a useful inequality is obtained, which can be used to derive the self-improving regularity.展开更多
Thurston proposed that conformal mappings can be approximated by circle packing isomorphisms and the approach can be implemented efficiently. Based on the circle packing methods the rate of convergence of approximatin...Thurston proposed that conformal mappings can be approximated by circle packing isomorphisms and the approach can be implemented efficiently. Based on the circle packing methods the rate of convergence of approximating solutions for quasiconformal mappings in the plane is discussed.展开更多
The distortion property of hyperbolic area of planar quasiconformal mappings is studied in this paper. In the case of radial quasiconformal mappings and angular deformed quasiconformal mappings their hyperbolic area d...The distortion property of hyperbolic area of planar quasiconformal mappings is studied in this paper. In the case of radial quasiconformal mappings and angular deformed quasiconformal mappings their hyperbolic area distortions are estimated quite sharply. The result can be applied to judge whether the hyperbolic area of a planar subset is explodable.展开更多
In this article,we first give two simple examples to illustrate that two types of parametric representation of the family ofΣ0 K have some gaps.Then we also find that the area derivative formula(1.6),which is used to...In this article,we first give two simple examples to illustrate that two types of parametric representation of the family ofΣ0 K have some gaps.Then we also find that the area derivative formula(1.6),which is used to estimate the area distortion ofΣ0 K,cannot be derived from[6],but that formula still holds forΣ0 K through our amendatory parametric representation for the one obtained by Eremenko and Hamilton.展开更多
Quasiconformal mappings between hyperbolic triangles are considered.We give an explicit estimate of the dilation of the quasiconformal mappings,which generalizes Bishop's results.
In this article, using the contraction mapping principle and the shooting method, the authors obtain the existence and uniqueness of the local solution and the global solution to a class of quasilinear elliptic system...In this article, using the contraction mapping principle and the shooting method, the authors obtain the existence and uniqueness of the local solution and the global solution to a class of quasilinear elliptic systems with p-Laplacian as its principal. They also obtain the continuous dependence of the solutions on the boundary data.展开更多
This paper provides several solutions to the degenerate scale for the shapes of triangles or quadrilaterals in an exterior boundary value problem (BVP) of the antiplane elasticity or the Laplace equation. The Schwar...This paper provides several solutions to the degenerate scale for the shapes of triangles or quadrilaterals in an exterior boundary value problem (BVP) of the antiplane elasticity or the Laplace equation. The Schwarz-Christoffel mapping is used throughout. It is found that a complex potential with a simple form in the mapping plane satisfies the vanishing displacement condition (or w ---- 0) along the boundary of the unit circle when the dimension R reaches its critical value 1. This means that the degenerate size in the physical plane is also achieved. The degenerate scales can be evaluated from the partic- ular integrals depending on certain parameters in the mapping function. The numerical results of degenerate sizes for the shapes of triangles or quadrilaterals are provided.展开更多
By studying the mapping by heights for quadratic differentials introduced by Strebel, some relations have been established between the maximal norm sequence for quasisymmetric functions and the Hamilton sequence for e...By studying the mapping by heights for quadratic differentials introduced by Strebel, some relations have been established between the maximal norm sequence for quasisymmetric functions and the Hamilton sequence for extremal quasiconformal mappings in the unit disk. Consequently it is proved that a Hamilton sequence is only determined by e quasisymmetric function.展开更多
The properties of the extremal sets of extremal quasiconformal mappings are discussed. It is proved that if an extremal Beltrami coefficient μ(z) is not uniquely extremal, then there exists an extremal Beltrami coeff...The properties of the extremal sets of extremal quasiconformal mappings are discussed. It is proved that if an extremal Beltrami coefficient μ(z) is not uniquely extremal, then there exists an extremal Beltrami coefficient ?(z) in its equivalent class and a compact subset E ? △ with positive measure such that the essential upper bound of ?(z) on E is less than the norm of [μ].展开更多
This paper gets the Beltrami equations satisfied by a 1-quasiconformal mapping, which are exactly CR or anti-CR equations on (2,2)-type quadric Q0. This means a 1-quasiconformal mapping on Q0 is CR or anti-CR. This ...This paper gets the Beltrami equations satisfied by a 1-quasiconformal mapping, which are exactly CR or anti-CR equations on (2,2)-type quadric Q0. This means a 1-quasiconformal mapping on Q0 is CR or anti-CR. This reduces the determination of 1- quasiconformal mappings to a problem on the theory of several complex analysis. The result about the group of CR automorphisms is used to determine the unit component of group of 1-quasiconformal mappings.展开更多
For every torsion free Fuchsian group F with Poincaré’s -operator norm ║г║=1, it is proved that there exists an extremal Beltrami differential of F which is also extremal under its own boundary correspondence...For every torsion free Fuchsian group F with Poincaré’s -operator norm ║г║=1, it is proved that there exists an extremal Beltrami differential of F which is also extremal under its own boundary correspondence. It is also proved that the imbedding of the Teichmüller space T(Γ) into the universal Teichmüller space T is not a global isometry unless Γ is an elementary group.展开更多
A homeomorphism w=f(z) of a domain D is called a locally quasiconformal mapping, if for each subdomain D' of D with 'D, the restriction of f(z) on D' is a quasiconformal mapping. We give some conditions for a m...A homeomorphism w=f(z) of a domain D is called a locally quasiconformal mapping, if for each subdomain D' of D with 'D, the restriction of f(z) on D' is a quasiconformal mapping. We give some conditions for a measurable function μ(z) on the unit disc to be the complex dilatation of a locally quasiconformal mapping f which can be homeomorphically extended to the closed unit disc.展开更多
This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node P0 and two hyperbolic saddles P1 and P2, where the hyperbolicity ratio of the saddle P1 (which connects the saddle-no...This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node P0 and two hyperbolic saddles P1 and P2, where the hyperbolicity ratio of the saddle P1 (which connects the saddle-node with hh-connection) is equal to 1 and that of the other saddle P2 is irrational. It is assumed that the connections between P0 to P2 and P0 to P1 keep unbroken. Then the cyclicity of this kind of polycycle is no more than m + 3 if the saddle P1 is of order m and the hyperbolicity ratio of P2 is bigger than m.Furthermore, the cyclicity of this polycycle is no more than 7 if the saddle P1 is of order 2 and the hyperbolicity ratio of P2 is located in the interval (1, 2).展开更多
We shall prove the equivalences of a non-degenerate circle-preserving map and a M(o)bius transformation in ^Rn, of a non-degenerate geodesic-preserving map and an isometry in Hn of a non-degenerate line-preserving map...We shall prove the equivalences of a non-degenerate circle-preserving map and a M(o)bius transformation in ^Rn, of a non-degenerate geodesic-preserving map and an isometry in Hn of a non-degenerate line-preserving map and an affine transformation in Rn. That a map is non-degenerate means that the image of the whole space under the map is not a circle, or geodesic or line respectively. These results hold without either injective or surjective, or even continuous assumptions, which are new and of a fundamental nature in geometry.展开更多
This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node and two hyperbolic saddles, where the hyperbolicity ratio of the saddle (which connects the saddle-node with hp-conn...This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node and two hyperbolic saddles, where the hyperbolicity ratio of the saddle (which connects the saddle-node with hp-connection) is equal to 1 and that of the other saddle is irrational. It is obtained that the cyclicity of this kind of polycycle is no more than 5 if the hp-connection keeps unbroken under the C^∞ perturbations.展开更多
In this paper, we investigate the number and the distribution of the limit cycles bifurcated from a kind of degenerate planar polycycles through three singular points: a saddle-node P 0, a fine saddle P 1 with finite ...In this paper, we investigate the number and the distribution of the limit cycles bifurcated from a kind of degenerate planar polycycles through three singular points: a saddle-node P 0, a fine saddle P 1 with finite order m ∈ N, a contractive (attracting) saddle P 2 with the hyperbolicity ratio q 2(0) ? Q. The connection between P 0 and P 1 is of hh-type and the connection between P 0 and P 2 is of hp-type. It is assumed that the connections between P 0 to P 2 and P 0 to P 1 keep unbroken. We obtain that the cyclicity of this polycycle is not more than 3m + 1, which is linearly dependent on the order of the resonant saddle P 1. We also show that the cyclicity is not more than m + 3 if q 2(0) > m, and that the nearer q 2(0) is close to 1, the more the limit cycles are bifurcated.展开更多
This paper provides a solution for the degenerate scale for N-gon configuration in antiplane elasticity using the conformal mapping function, and the lower and upper bounds for the degenerate scale for N = 3, 4, 5, 6,...This paper provides a solution for the degenerate scale for N-gon configuration in antiplane elasticity using the conformal mapping function, and the lower and upper bounds for the degenerate scale for N = 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 100, 150 and 200, are evaluated.展开更多
In this paper we define two classes of quasiconformal mappings, and study theircovering properties by methods of module. We obtain some new results. In the meantime,we give new methods to prove Koebe 1/2 covering theo...In this paper we define two classes of quasiconformal mappings, and study theircovering properties by methods of module. We obtain some new results. In the meantime,we give new methods to prove Koebe 1/2 covering theorem on convex conformal mappings.展开更多
基金Research supported by NSFC (10471149)Special Fund of Mathematics Research of Natural Science Foundation of Hebei Province (07M003)Doctoral Foundation of Hebei Province Ministry of Education (B2004103).
文摘The authors first give the definition of degenerate weakly (K1,K2)-quasiregular mappings using the technique of exterior power and exterior differential forms, and then, using the method of McShane extension, a useful inequality is obtained, which can be used to derive the self-improving regularity.
基金This project is supported in part by NSF of China(60575004, 10231040)NSF of GuangDong, Grants from the Ministry of Education of China(NCET-04-0791)Grants from Sun Yat-Sen University
文摘Thurston proposed that conformal mappings can be approximated by circle packing isomorphisms and the approach can be implemented efficiently. Based on the circle packing methods the rate of convergence of approximating solutions for quasiconformal mappings in the plane is discussed.
基金Supported by the Natural Science Foundation of Huaqiao University(02HZR12)Supported by the Natural Science Foundation of Overseas Chinese Affairs Office under the State Council(01QZR01)
文摘The distortion property of hyperbolic area of planar quasiconformal mappings is studied in this paper. In the case of radial quasiconformal mappings and angular deformed quasiconformal mappings their hyperbolic area distortions are estimated quite sharply. The result can be applied to judge whether the hyperbolic area of a planar subset is explodable.
基金National Natural Science Foundation of China(11971182)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY402)+1 种基金Research projects of Young and Middle-aged Teacher's Education of Fujian Province(JAT190508)Scientific research project of Quanzhou Normal University(H19009).
文摘In this article,we first give two simple examples to illustrate that two types of parametric representation of the family ofΣ0 K have some gaps.Then we also find that the area derivative formula(1.6),which is used to estimate the area distortion ofΣ0 K,cannot be derived from[6],but that formula still holds forΣ0 K through our amendatory parametric representation for the one obtained by Eremenko and Hamilton.
基金Partially Supported by NSFC(Grant No.12071047)Fundamental Research Funds for the Central Universities(Grant No.500421126).
文摘Quasiconformal mappings between hyperbolic triangles are considered.We give an explicit estimate of the dilation of the quasiconformal mappings,which generalizes Bishop's results.
文摘In this article, using the contraction mapping principle and the shooting method, the authors obtain the existence and uniqueness of the local solution and the global solution to a class of quasilinear elliptic systems with p-Laplacian as its principal. They also obtain the continuous dependence of the solutions on the boundary data.
文摘This paper provides several solutions to the degenerate scale for the shapes of triangles or quadrilaterals in an exterior boundary value problem (BVP) of the antiplane elasticity or the Laplace equation. The Schwarz-Christoffel mapping is used throughout. It is found that a complex potential with a simple form in the mapping plane satisfies the vanishing displacement condition (or w ---- 0) along the boundary of the unit circle when the dimension R reaches its critical value 1. This means that the degenerate size in the physical plane is also achieved. The degenerate scales can be evaluated from the partic- ular integrals depending on certain parameters in the mapping function. The numerical results of degenerate sizes for the shapes of triangles or quadrilaterals are provided.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19871002).
文摘By studying the mapping by heights for quadratic differentials introduced by Strebel, some relations have been established between the maximal norm sequence for quasisymmetric functions and the Hamilton sequence for extremal quasiconformal mappings in the unit disk. Consequently it is proved that a Hamilton sequence is only determined by e quasisymmetric function.
基金This work was supported by the National Natural Science Foundation of China(Grant No,10271029).
文摘The properties of the extremal sets of extremal quasiconformal mappings are discussed. It is proved that if an extremal Beltrami coefficient μ(z) is not uniquely extremal, then there exists an extremal Beltrami coefficient ?(z) in its equivalent class and a compact subset E ? △ with positive measure such that the essential upper bound of ?(z) on E is less than the norm of [μ].
基金Supported by the National Natural Science Foundation of China (10571155)
文摘This paper gets the Beltrami equations satisfied by a 1-quasiconformal mapping, which are exactly CR or anti-CR equations on (2,2)-type quadric Q0. This means a 1-quasiconformal mapping on Q0 is CR or anti-CR. This reduces the determination of 1- quasiconformal mappings to a problem on the theory of several complex analysis. The result about the group of CR automorphisms is used to determine the unit component of group of 1-quasiconformal mappings.
文摘For every torsion free Fuchsian group F with Poincaré’s -operator norm ║г║=1, it is proved that there exists an extremal Beltrami differential of F which is also extremal under its own boundary correspondence. It is also proved that the imbedding of the Teichmüller space T(Γ) into the universal Teichmüller space T is not a global isometry unless Γ is an elementary group.
基金supported by National Natural Science Foundation of China (Grant Nos.10671004,10831004)The Doctoral Education Program Foundation (Grant No.20060001003)
文摘We show that the extremal polygonal quasiconformal mappings are biLipschitz with respect to the hyperbolic metric in the unit disk.
基金Supported by National Natural Science Foundation of China (Grant No 10971030)
文摘A homeomorphism w=f(z) of a domain D is called a locally quasiconformal mapping, if for each subdomain D' of D with 'D, the restriction of f(z) on D' is a quasiconformal mapping. We give some conditions for a measurable function μ(z) on the unit disc to be the complex dilatation of a locally quasiconformal mapping f which can be homeomorphically extended to the closed unit disc.
基金This work was supported by the National Natural Science Foundation of China(Grant No.19901001).
文摘This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node P0 and two hyperbolic saddles P1 and P2, where the hyperbolicity ratio of the saddle P1 (which connects the saddle-node with hh-connection) is equal to 1 and that of the other saddle P2 is irrational. It is assumed that the connections between P0 to P2 and P0 to P1 keep unbroken. Then the cyclicity of this kind of polycycle is no more than m + 3 if the saddle P1 is of order m and the hyperbolicity ratio of P2 is bigger than m.Furthermore, the cyclicity of this polycycle is no more than 7 if the saddle P1 is of order 2 and the hyperbolicity ratio of P2 is located in the interval (1, 2).
基金the National Natural Science Foundation of China(Grant No.10125103)the 973 Project of China.
文摘We shall prove the equivalences of a non-degenerate circle-preserving map and a M(o)bius transformation in ^Rn, of a non-degenerate geodesic-preserving map and an isometry in Hn of a non-degenerate line-preserving map and an affine transformation in Rn. That a map is non-degenerate means that the image of the whole space under the map is not a circle, or geodesic or line respectively. These results hold without either injective or surjective, or even continuous assumptions, which are new and of a fundamental nature in geometry.
基金Project sponsored by National Science Foundation (19901001)
文摘This paper deals with the cyclicity of a kind of degenerate planar polycycles through a saddle-node and two hyperbolic saddles, where the hyperbolicity ratio of the saddle (which connects the saddle-node with hp-connection) is equal to 1 and that of the other saddle is irrational. It is obtained that the cyclicity of this kind of polycycle is no more than 5 if the hp-connection keeps unbroken under the C^∞ perturbations.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10671020)
文摘In this paper, we investigate the number and the distribution of the limit cycles bifurcated from a kind of degenerate planar polycycles through three singular points: a saddle-node P 0, a fine saddle P 1 with finite order m ∈ N, a contractive (attracting) saddle P 2 with the hyperbolicity ratio q 2(0) ? Q. The connection between P 0 and P 1 is of hh-type and the connection between P 0 and P 2 is of hp-type. It is assumed that the connections between P 0 to P 2 and P 0 to P 1 keep unbroken. We obtain that the cyclicity of this polycycle is not more than 3m + 1, which is linearly dependent on the order of the resonant saddle P 1. We also show that the cyclicity is not more than m + 3 if q 2(0) > m, and that the nearer q 2(0) is close to 1, the more the limit cycles are bifurcated.
文摘This paper provides a solution for the degenerate scale for N-gon configuration in antiplane elasticity using the conformal mapping function, and the lower and upper bounds for the degenerate scale for N = 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 100, 150 and 200, are evaluated.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(04B056)Supported by the Nanhua University Key Items(06Z02)
文摘In this paper we define two classes of quasiconformal mappings, and study theircovering properties by methods of module. We obtain some new results. In the meantime,we give new methods to prove Koebe 1/2 covering theorem on convex conformal mappings.