We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (...We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (I-V) model, derived based on both Poisson's and continuity equations without the need of charge-sheet approxi- mation. The developed model offers the possibility to describe the entire range of different regions (subthreshold, linear and saturation) through a unique continuous expression. Therefore, the proposed approach can bring consid- erable enhancement at the level of multi-gate compact modeling including hot-carrier degradation effects.展开更多
The degradation of U-14C-lindane in two Egyptian soils was determined in a three-month laboratory incubation. Lindane mineralization was slow and limited in both soils. Evolution of 14CO2 increased with time but only ...The degradation of U-14C-lindane in two Egyptian soils was determined in a three-month laboratory incubation. Lindane mineralization was slow and limited in both soils. Evolution of 14CO2 increased with time but only reached 3. 5 to 5. 5 % of the initial 14C-concentration within 90 days. At that time both soils contained about 88 % of the applied radiocarbon; 33 % to 37% of the initial dose was unextractable and assumed bound to the soils. The methanol-ex-tractable 14C primarily contained lindane with traces of minor metabolites. Radiorespirometry was used to eva1uate the effect of lindane on soil microbial activity. Low concentrations of the insecticide initially supressed 14CO2 evolution from U-14C-glucose and microbial activity was significantly inhibited by 10 mg lindane/kg soil.展开更多
[Objective] The influence of mixed silage of A.sparsifolia and M.sativa at initial flowering stage on degradation was studied to provide theoretical basis for production practice.[Method] Using A.sparsifolia and M.sat...[Objective] The influence of mixed silage of A.sparsifolia and M.sativa at initial flowering stage on degradation was studied to provide theoretical basis for production practice.[Method] Using A.sparsifolia and M.sativa at initial flowering stage as materials,the changes of in vitro degradation rate,gas production,pH value,ammoniacal nitrogen(NH3-N)and volatile fatty acid(VFA)content in degradation solution were analyzed by means of artificial rumen technique,and the effect of mixed silage of A.sparsifolia and M.sativa at initial flowering stage on degradation was studied in order to find out suitable mixed silage ratio of A.sparsifolia and M.sativa.[Result] Compared with single M.sativa,NH3-N content in degradation solution was very significantly decreased in the mixed silage of A.sparsifolia and M.sativa,and there was a reduction in gas production,while the content of acetic acid,propionic acid and butyric acid increased significantly;for the treatment of 70% A.sparsifolia and 30% M.sativa,NH3-N content(22.93 mmol/L)and gas production(40.50 ml)was lowest,while degradation rate(32.27%),acetic acid(5.48 mmol/L),propionic acid(2.08 mmol/L),butyric acid(2.52 mmol/L)and their total content(10.08 mmol/L)were highest,so its degradation effect was the best.[Conclusion] The mixed silage of A.sparsifolia and M.sativa at initial flowering stage could improve the utilization efficiency of protein and carbohydrate in M.sativa and the treatment of 70% A.sparsifolia and 30% M.sativa had the best degradation effect.展开更多
The frequency band between 5 010 MHz and 5 030 MHz allocated as C band has been used as a candidate in the global navigation satellite systems (GNSS) along with more and more naviga- tion services in L band. The pot...The frequency band between 5 010 MHz and 5 030 MHz allocated as C band has been used as a candidate in the global navigation satellite systems (GNSS) along with more and more naviga- tion services in L band. The potential benefits and technical requirements of C band for satellite navi- gation have been analyzed before. However the degradation of effective carrier-power-to-noise densi- ty ratio( A (C/No )eu) based on code tracking spectral sensitivity coefficient( CT_SSC ) as a compati- bility assessment methodology for potential GNSS radio frequency compatibility in C-Band has not been discussed clearly. So the compatibility of the signals in the C band between BeiDou (BD) B1 C and GPS L1C, L1C/A, Galileo E1Os as the interoperability or classical signals in L band is analyzed. Simulation results reveal the interference degree between BD III B1C and GPS L1C/A, L1C, Galileo E1OS. The results can also reveal that the multiplexed binary offset carrier (MBOC) and binary phase shift keying (BPSK) modulation is not appropriate for C band.展开更多
Degradation reaction of doxycycline or methacycline was carried out in KOH solution and intense fluorescence was obtained.A degradation mechanism of doxycycline or methacycline was suggested.
The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in ...The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in PAO1. After induction by IPTG for 6 h and 18 h, expression of the aiiA gene in PAO1 completely degraded the quorum sensing autoinducers N-acylhomoserine lactones (AHLs): N-oxododecanoyl-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL). The re- duced amount of AHLs in PAO1 was also correlated with decreased expression and production of several virulence factors such as elastase and pyocyanin. AiiA expression also influenced bacterial swarming motility. Most importantly, our studies indicated that aiiA played significant roles in P. aeruginosa biofilm formation and dispersion, as observed by the differences of the biofilm formation on liquid and solid surfaces, and biofilm structures under a scanning electron microscope.展开更多
Electrical stress experiments under different bias configurations for AlGaN/GaN high electron mobility transistors were performed and analyzed.The electric field applied was found to be the extrinsic cause for the dev...Electrical stress experiments under different bias configurations for AlGaN/GaN high electron mobility transistors were performed and analyzed.The electric field applied was found to be the extrinsic cause for the device instability,while the traps were recognized as the main intrinsic factor.The effect of the traps on the device degradation was identified by recovery experiments and pulsed I-V measurements.The total degradation of the devices consists of two parts:recoverable degradation and unrecoverable degradation.The electric field induced traps combined with the inherent ones in the device bulk are mainly responsible for the recoverable degradation.展开更多
Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-boar...Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-board model strategies is proposed for gas tur-bine aero-engines under in-service degradation effects,which aims at active thrust regulation and acceleration protection in a simultaneous way.The AuTVM control is integrated with an on-line block,based on a reliable on-board engine model,and an off-line part for the periodical update of control parameters via post-flight engine monitoring data.The core feature of the AuTVM control is a set of auto-updating loops within the on-line part,including thrust regu-lation loop,surge margin loop,turbine entry temperature loop,and the steady loop,whose con-trol parameters are periodically adjusted with increasingflight cycles.Meanwhile,an industrial sensor-based baseline controller and two tailored model-based controllers,i.e.,a thrust variation mitigation(TVM)controller withfixed gains and a self-enhancing active transient protection(SeATP)controller with pro-active transient protection and passive thrust control,are also developed as comparison bases.Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degra-dation data.Simulation results demonstrate that both new engines and severely degraded en-gines regulated by the AuTVM controller show significant thrust response enhancement,compared to the baseline controller.Moreover,thrust variation at the maximum steady state of degraded engines,which exists within the SeATP controller and the baseline controller,is suppressed by the proposed AuTVM controller.Robustness analysis against degradation uncer-tainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively.Hence,the control performance of the AuTVM controller for in-service engines is guaranteed.展开更多
Carbon nanotube (CNTs)/Fe-Ni/TiO2 nanocomposite photocatalysts have been synthesized by an in situ fluidized bed chemical vapor deposition (FBCVD) method. The composite photocatalysts were characterized by XRD, Ra...Carbon nanotube (CNTs)/Fe-Ni/TiO2 nanocomposite photocatalysts have been synthesized by an in situ fluidized bed chemical vapor deposition (FBCVD) method. The composite photocatalysts were characterized by XRD, Raman spectroscopy, BET, FESEM, TEM, UV-vis spectroscopy, and XPS. The results showed that the CNTs were grown in situ on the surface of TiO2. Fe(Ⅲ) in TiO2 showed no chemical changes in the growth of CNTs. Ni(Ⅱ) was partly reduced to metal Ni in the FBCVD process, and the metal Ni acted as a catalyst for the growth of CNTs. The photocatalytic activities of CNTs/Fe-Ni/TiO2 decreased with the rise of the FBCVD reaction temperature. For the sample synthesized at low FBCVD temperature (500 ℃), more than 90% and nearly 50% of methylene blue were removed under UV irradiation in 180 min and under visible light irradiation in 300 min, respectively. The probable mechanism of synergistic enhancement of photocatalysis on the CNTs/Fe-Ni/TiO2 nanocomposite is proposed.展开更多
A fuzzy framework based on an adaptive network fuzzy inference system(ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film d...A fuzzy framework based on an adaptive network fuzzy inference system(ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film double-gate(DG) MOSFETs.The effect of the channel length and thickness on the resulting degradation is addressed, and 2-D numerical simulations are used for the elaboration of the training database.Several membership function shapes are developed,and the best one in terms of accuracy is selected.The predicted results agree well with the 2-D numerical simulations and can be efficiently used to investigate the impact of the interface fixed charges and quantum confinement on nanoscale DG MOSFET subthreshold behavior.Therefore,the proposed ANFIS-based approach offers a simple and accurate technique to study nanoscale devices,including the hot-carrier and quantum effects.展开更多
文摘We have studied the influence of hot-carrier degradation effects on the drain current of a gate-stack double-gate (GS DG) MOSFET device. Our analysis is carried out by using an accurate continuous current-voltage (I-V) model, derived based on both Poisson's and continuity equations without the need of charge-sheet approxi- mation. The developed model offers the possibility to describe the entire range of different regions (subthreshold, linear and saturation) through a unique continuous expression. Therefore, the proposed approach can bring consid- erable enhancement at the level of multi-gate compact modeling including hot-carrier degradation effects.
文摘The degradation of U-14C-lindane in two Egyptian soils was determined in a three-month laboratory incubation. Lindane mineralization was slow and limited in both soils. Evolution of 14CO2 increased with time but only reached 3. 5 to 5. 5 % of the initial 14C-concentration within 90 days. At that time both soils contained about 88 % of the applied radiocarbon; 33 % to 37% of the initial dose was unextractable and assumed bound to the soils. The methanol-ex-tractable 14C primarily contained lindane with traces of minor metabolites. Radiorespirometry was used to eva1uate the effect of lindane on soil microbial activity. Low concentrations of the insecticide initially supressed 14CO2 evolution from U-14C-glucose and microbial activity was significantly inhibited by 10 mg lindane/kg soil.
基金Supported by National Natural Science Foundation of China(30960256)Scientific Research Special Fund for Public WelfareIndustry(nyhyzx07-022)Project of Key Laboratory of Tarim Animal Husbandry Science and Technology,Xinjiang Production and Construction Group(HS20802)~~
文摘[Objective] The influence of mixed silage of A.sparsifolia and M.sativa at initial flowering stage on degradation was studied to provide theoretical basis for production practice.[Method] Using A.sparsifolia and M.sativa at initial flowering stage as materials,the changes of in vitro degradation rate,gas production,pH value,ammoniacal nitrogen(NH3-N)and volatile fatty acid(VFA)content in degradation solution were analyzed by means of artificial rumen technique,and the effect of mixed silage of A.sparsifolia and M.sativa at initial flowering stage on degradation was studied in order to find out suitable mixed silage ratio of A.sparsifolia and M.sativa.[Result] Compared with single M.sativa,NH3-N content in degradation solution was very significantly decreased in the mixed silage of A.sparsifolia and M.sativa,and there was a reduction in gas production,while the content of acetic acid,propionic acid and butyric acid increased significantly;for the treatment of 70% A.sparsifolia and 30% M.sativa,NH3-N content(22.93 mmol/L)and gas production(40.50 ml)was lowest,while degradation rate(32.27%),acetic acid(5.48 mmol/L),propionic acid(2.08 mmol/L),butyric acid(2.52 mmol/L)and their total content(10.08 mmol/L)were highest,so its degradation effect was the best.[Conclusion] The mixed silage of A.sparsifolia and M.sativa at initial flowering stage could improve the utilization efficiency of protein and carbohydrate in M.sativa and the treatment of 70% A.sparsifolia and 30% M.sativa had the best degradation effect.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2011AA120502)
文摘The frequency band between 5 010 MHz and 5 030 MHz allocated as C band has been used as a candidate in the global navigation satellite systems (GNSS) along with more and more naviga- tion services in L band. The potential benefits and technical requirements of C band for satellite navi- gation have been analyzed before. However the degradation of effective carrier-power-to-noise densi- ty ratio( A (C/No )eu) based on code tracking spectral sensitivity coefficient( CT_SSC ) as a compati- bility assessment methodology for potential GNSS radio frequency compatibility in C-Band has not been discussed clearly. So the compatibility of the signals in the C band between BeiDou (BD) B1 C and GPS L1C, L1C/A, Galileo E1Os as the interoperability or classical signals in L band is analyzed. Simulation results reveal the interference degree between BD III B1C and GPS L1C/A, L1C, Galileo E1OS. The results can also reveal that the multiplexed binary offset carrier (MBOC) and binary phase shift keying (BPSK) modulation is not appropriate for C band.
文摘Degradation reaction of doxycycline or methacycline was carried out in KOH solution and intense fluorescence was obtained.A degradation mechanism of doxycycline or methacycline was suggested.
基金the National Natural Science Foundation of China (Grant No. 30570020)Natural Science Foundation of Hubei Province of China (Grant No. 2004ABA120)
文摘The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in PAO1. After induction by IPTG for 6 h and 18 h, expression of the aiiA gene in PAO1 completely degraded the quorum sensing autoinducers N-acylhomoserine lactones (AHLs): N-oxododecanoyl-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL). The re- duced amount of AHLs in PAO1 was also correlated with decreased expression and production of several virulence factors such as elastase and pyocyanin. AiiA expression also influenced bacterial swarming motility. Most importantly, our studies indicated that aiiA played significant roles in P. aeruginosa biofilm formation and dispersion, as observed by the differences of the biofilm formation on liquid and solid surfaces, and biofilm structures under a scanning electron microscope.
基金Project supported by the National Natural Science Foundation of China(Nos.60890192,60876009)
文摘Electrical stress experiments under different bias configurations for AlGaN/GaN high electron mobility transistors were performed and analyzed.The electric field applied was found to be the extrinsic cause for the device instability,while the traps were recognized as the main intrinsic factor.The effect of the traps on the device degradation was identified by recovery experiments and pulsed I-V measurements.The total degradation of the devices consists of two parts:recoverable degradation and unrecoverable degradation.The electric field induced traps combined with the inherent ones in the device bulk are mainly responsible for the recoverable degradation.
基金supported by China National Postdoctoral Program for Innovative Talents (Grant No.:BX20220373)the Fundamental Research Funds for the Central Universities (Grant No.:YWF-23-Q-1067)Young Elite Scientists Sponsorship Program by BAST (Grant No.:BYESS2023081).
文摘Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-board model strategies is proposed for gas tur-bine aero-engines under in-service degradation effects,which aims at active thrust regulation and acceleration protection in a simultaneous way.The AuTVM control is integrated with an on-line block,based on a reliable on-board engine model,and an off-line part for the periodical update of control parameters via post-flight engine monitoring data.The core feature of the AuTVM control is a set of auto-updating loops within the on-line part,including thrust regu-lation loop,surge margin loop,turbine entry temperature loop,and the steady loop,whose con-trol parameters are periodically adjusted with increasingflight cycles.Meanwhile,an industrial sensor-based baseline controller and two tailored model-based controllers,i.e.,a thrust variation mitigation(TVM)controller withfixed gains and a self-enhancing active transient protection(SeATP)controller with pro-active transient protection and passive thrust control,are also developed as comparison bases.Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degra-dation data.Simulation results demonstrate that both new engines and severely degraded en-gines regulated by the AuTVM controller show significant thrust response enhancement,compared to the baseline controller.Moreover,thrust variation at the maximum steady state of degraded engines,which exists within the SeATP controller and the baseline controller,is suppressed by the proposed AuTVM controller.Robustness analysis against degradation uncer-tainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively.Hence,the control performance of the AuTVM controller for in-service engines is guaranteed.
基金supported by the Special Projects for Nanotechnology of Shanghai(1052mm02400)the National Nature Science Foundation of China(20925621)
文摘Carbon nanotube (CNTs)/Fe-Ni/TiO2 nanocomposite photocatalysts have been synthesized by an in situ fluidized bed chemical vapor deposition (FBCVD) method. The composite photocatalysts were characterized by XRD, Raman spectroscopy, BET, FESEM, TEM, UV-vis spectroscopy, and XPS. The results showed that the CNTs were grown in situ on the surface of TiO2. Fe(Ⅲ) in TiO2 showed no chemical changes in the growth of CNTs. Ni(Ⅱ) was partly reduced to metal Ni in the FBCVD process, and the metal Ni acted as a catalyst for the growth of CNTs. The photocatalytic activities of CNTs/Fe-Ni/TiO2 decreased with the rise of the FBCVD reaction temperature. For the sample synthesized at low FBCVD temperature (500 ℃), more than 90% and nearly 50% of methylene blue were removed under UV irradiation in 180 min and under visible light irradiation in 300 min, respectively. The probable mechanism of synergistic enhancement of photocatalysis on the CNTs/Fe-Ni/TiO2 nanocomposite is proposed.
文摘A fuzzy framework based on an adaptive network fuzzy inference system(ANFIS) is proposed to evaluate the relative degradation of the basic subthreshold parameters due to hot-carrier effects for nanoscale thin-film double-gate(DG) MOSFETs.The effect of the channel length and thickness on the resulting degradation is addressed, and 2-D numerical simulations are used for the elaboration of the training database.Several membership function shapes are developed,and the best one in terms of accuracy is selected.The predicted results agree well with the 2-D numerical simulations and can be efficiently used to investigate the impact of the interface fixed charges and quantum confinement on nanoscale DG MOSFET subthreshold behavior.Therefore,the proposed ANFIS-based approach offers a simple and accurate technique to study nanoscale devices,including the hot-carrier and quantum effects.