期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adsorption Site Regulations of[W–O]‑Doped CoP Boosting the Hydrazine Oxidation‑Coupled Hydrogen Evolution at Elevated Current Density
1
作者 Ge Meng Ziwei Chang +7 位作者 Libo Zhu Chang Chen Yafeng Chen Han Tian Wenshu Luo Wenping Sun Xiangzhi Cui Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期418-434,共17页
Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode... Hydrazine oxidation reaction(HzOR)assisted hydrogen evolution reaction(HER)offers a feasible path for low power consumption to hydrogen production.Unfortunately however,the total electrooxidation of hydrazine in anode and the dissociation kinetics of water in cathode are critically depend on the interaction between the reaction intermediates and surface of catalysts,which are still challenging due to the totally different catalytic mechanisms.Herein,the[W–O]group with strong adsorption capacity is introduced into CoP nanoflakes to fabricate bifunctional catalyst,which possesses excellent catalytic performances towards both HER(185.60 mV at 1000 mA cm^(−2))and HzOR(78.99 mV at 10,00 mA cm^(−2))with the overall electrolyzer potential of 1.634 V lower than that of the water splitting system at 100 mA cm^(−2).The introduction of[W–O]groups,working as the adsorption sites for H2O dissociation and N2H4 dehydrogenation,leads to the formation of porous structure on CoP nanoflakes and regulates the electronic structure of Co through the linked O in[W–O]group as well,resultantly boosting the hydrogen production and HzOR.Moreover,a proof-of-concept direct hydrazine fuel cell-powered H_(2) production system has been assembled,realizing H_(2)evolution at a rate of 3.53 mmol cm^(−2)h^(−1)at room temperature without external electricity supply. 展开更多
关键词 Self-powered H_(2)production system Electron redistribution [W–O]dopant dehydrogenation kinetics
下载PDF
CFD modeling using heterogeneous reaction kinetics for catalytic dehydrogenation syngas reactions in a fixed-bed reactor 被引量:2
2
作者 Xiaomin Chen Jiu Dai Zhenghong Luo 《Particuology》 SCIE EI CAS CSCD 2013年第6期703-714,共12页
A comprehensive 2D computational fluid dynamics (CFD) model was developed to simulate the flow behavior and catalytic dehydrogenation reaction of syngas in a heterogenous fixed-bed reactor (FBR). The model combine... A comprehensive 2D computational fluid dynamics (CFD) model was developed to simulate the flow behavior and catalytic dehydrogenation reaction of syngas in a heterogenous fixed-bed reactor (FBR). The model combined the porous medium CFD model with a reaction kinetics model. To acquire an accu- rate reaction kinetics model, a comprehensive reaction mechanism was studied for the heterogeneous catalytic dehydrogenation reaction ofsyngas over a supported metal catalyst. Based on the reaction mech- anism and a statistical test, a reliable kinetics model was proposed. The CFD model combined with the above kinetics model was validated with one set of experimental data. The CFD model was also used to predict key reaction variable distributions such as the temperature and the component concentrations in the reactor. 展开更多
关键词 Reaction engineering Multiphase reactor Packed bed kinetics CFD Syngas dehydrogenation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部