Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne...Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.展开更多
Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope...Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope towards the future life, but both make wrong choices; in the following years, both suffer a lot from these wrong choices, and feel regretful. This paper tries to explore these two tragic female images.展开更多
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear ...Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms.展开更多
The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when co...The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s.展开更多
Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convol...Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.展开更多
This paper is going to do a research on the book The Bonesetter's Daughter and will make an analysis of mysterious images appear in the novel which can be considered as symbols that reflect the culture of orient. ...This paper is going to do a research on the book The Bonesetter's Daughter and will make an analysis of mysterious images appear in the novel which can be considered as symbols that reflect the culture of orient. And it also looks into the identity issue of Chinese American women from postcolonial perspective.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
The paper mainly talks about the background of S. T. Coleridge and the images of The Rime of the AncientMariner. As for the images, the wind, the albatross and the snake will be thoroughly discussed. There are manydif...The paper mainly talks about the background of S. T. Coleridge and the images of The Rime of the AncientMariner. As for the images, the wind, the albatross and the snake will be thoroughly discussed. There are manydifferent images which also have different meanings and connotations in the context. What's more, the poemexpresses the theme of the metabolic relationships between men and nature: harmony, conflict or compromise.展开更多
Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved ...Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.展开更多
William Faulkner is considered to be the most influential writers of America in the twentieth century. He has created a lot of great works in his lifetime, and The Sound and the Fury, which becomes the focus of study ...William Faulkner is considered to be the most influential writers of America in the twentieth century. He has created a lot of great works in his lifetime, and The Sound and the Fury, which becomes the focus of study and research among critics, is one of the outstanding representatives. As a famous southern writer, Faulkner' s concentrations not only just rely on the person' s inner world but also divergence into the broad external space. By observing male' s oppression and destruction toward female, Faulkner elaborates feminine crisis from another angle which reflects his strong humanistic concern. This paper tries to explore women' s images, which include Caddy, little Quentin, Dilsey and Mrs. Comoson. under the traditional patriarchy YoknaDatawoha County.展开更多
<strong>Background:</strong> Worldwide, prostatic adenocarcinoma is the most common tumour type among men. <strong>Aim:</strong> The aim of the present investigation was to develop a computer p...<strong>Background:</strong> Worldwide, prostatic adenocarcinoma is the most common tumour type among men. <strong>Aim:</strong> The aim of the present investigation was to develop a computer program to identify normal prostate biopsies and distinguish them from biopsies showing premalignant alterations (LGPIN, HGPIN) and adenocarcinoma. <strong>Method:</strong> Prostate biopsies (n = 2094) taken from 191 consecutive men during 2016 were stained with triple immunehistochemisty (antibodies to AMACRA, p63 and CK 5). Digital images of the biopsies were obtained with a scanning microscope and used to develop an automatic computer program (CelldaTM), intended to identify the morphological alterations. Visual microscopic finding was used as a reference. <strong>Result:</strong> Of the 191 men, 121 (63.4%) were diagnosed as having prostate adenocarcinoma and 70 (36.6%) as having no malignancy on the basis of the visual microscopy. In comparison, computer analysis identified 134 (70.2%) men with malignant disease and 57 (29.8%) with non-malignant disease after exclusion of artifacts, which constituted 10.4% of areas (indicated as malignant disease). Discrepant results were recorded in 15 (7.9%) men, and in 14 of these cases, HGPIN and areas suggestive of early invasion were common. Thus, it was uncertain whether these cases should be regarded as malignant or not. The agreement between the visual examination and the computer analysis was 92.1% (kappa value 0.823, sensitivity 99.2 and specificity was 0.80). <strong>Conclusion:</strong> It seems that computer analysis could serve as an adjunct to simplify and shorten the diagnostic procedure, first of all by ensuring that normal prostate biopsies are sorted out from those sent for visual microscopic evaluation.展开更多
In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and dis...In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and distinguishable features in comparison to existing methods based on wavelet transformation. In this paper, we investigated performance of texture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. Experimental results show that the performance with First and Second Order Statistics based features is significantly better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all classifiers.展开更多
The classification and identification of brain diseases with multimodal information have attracted increasing attention in the domain of computer-aided. Compared with traditional method which use single modal feature ...The classification and identification of brain diseases with multimodal information have attracted increasing attention in the domain of computer-aided. Compared with traditional method which use single modal feature information, multiple modal information fusion can classify and diagnose brain diseases more comprehensively and accurately in patient subjects. Existing multimodal methods require manual extraction of features or additional personal information, which consumes a lot of manual work. Furthermore, the difference between different modal images along with different manual feature extraction make it difficult for models to learn the optimal solution. In this paper, we propose a multimodal 3D convolutional neural networks framework for classification of brain disease diagnosis using MR images data and PET images data of subjects. We demonstrate the performance of the proposed approach for classification of Alzheimer’s disease (AD) versus mild cognitive impairment (MCI) and normal controls (NC) on the Alzheimer’s Disease National Initiative (ADNI) data set of 3D structural MRI brain scans and FDG-PET images. Experimental results show that the performance of the proposed method for AD vs. NC, MCI vs. NC are 93.55% and 78.92% accuracy respectively. And the accuracy of the results of AD, MCI and NC 3-classification experiments is 68.86%.展开更多
After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The s...After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The slogan of Wunvfeng National Forest Park had been identified as "tour of nature and mythology-Wunvfeng", and the park's emblem, symbolic mascots, spokesman of tourism image and tourist souvenirs had been set, so as to better display tourist advantages of Wunvfeng National Forest Park and create more economic and social benefits.展开更多
BACKGROUND The activity staging of Crohn’s disease(CD)in the terminal ileum is critical in developing an accurate clinical treatment plan.The activity of terminal ileum CD is associated with the microcirculation of i...BACKGROUND The activity staging of Crohn’s disease(CD)in the terminal ileum is critical in developing an accurate clinical treatment plan.The activity of terminal ileum CD is associated with the microcirculation of involved bowel walls.Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)and diffusionweighted imaging(DWI)can reflect perfusion and permeability of bowel walls by providing microcirculation information.As such,we hypothesize that DCE-MRI and DWI parameters can assess terminal ileum CD,thereby providing an opportunity to stage CD activity.AIM To evaluate the value of DCE-MRI and DWI in assessing activity of terminal ileum CD.METHODS Forty-eight patients with CD who underwent DCE-MRI and DWI were enrolled.The patients’activity was graded as remission,mild and moderate-severe.The transfer constant(Ktrans),wash-out constant(Kep),and extravascular extracellular volume fraction(Ve)were calculated from DCE-MRI and the apparent diffusion coefficient(ADC)was obtained from DWI.Magnetic Resonance Index of Activity(MaRIA)was calculated from magnetic resonance enterography.Differences in these quantitative parameters were compared between normal ileal loop(NIL)and inflamed terminal ileum(ITI)and among different activity grades.The correlations between these parameters,MaRIA,the Crohn’s Disease Activity Index(CDAI),and Crohn’s Disease Endoscopic Index of Severity(CDEIS)were examined.Receiver operating characteristic curve analyses were used to determine the diagnostic performance of these parameters in differentiating between CD activity levels.RESULTS Higher Ktrans(0.07±0.04 vs 0.01±0.01),Kep(0.24±0.11 vs 0.15±0.05)and Ve(0.27±0.07 vs 0.08±0.03),but lower ADC(1.41±0.26 vs 2.41±0.30)values were found in ITI than in NIL(all P<0.001).The Ktrans,Kep,Ve and MaRIA increased with disease activity,whereas the ADC decreased(all P<0.001).The Ktrans,Kep,Ve and MaRIA showed positive correlations with the CDAI(r=0.866 for Ktrans,0.870 for Kep,0.858 for Ve,0.890 for MaRIA,all P<0.001)and CDEIS(r=0.563 for Ktrans,0.567 for Kep,0.571 for Ve,0.842 for MaRIA,all P<0.001),while the ADC showed negative correlations with the CDAI(r=-0.857,P<0.001)and CDEIS(r=-0.536,P<0.001).The areas under the curve(AUC)for the Ktrans,Kep,Ve,ADC and MaRIA values ranged from 0.68 to 0.91 for differentiating inactive CD(CD remission)from active CD(mild to severe CD).The AUC when combining the Ktrans,Kep and Ve was 0.80,while combining DCE-MRI parameters and ADC values yielded the highest AUC of 0.95.CONCLUSION DCE-MRI and DWI parameters all serve as measures to stage CD activity.When they are combined,the assessment performance is improved and better than MaRIA.展开更多
AIM: To investigate whether narrow band imaging (NBI) is a useful tool for the in vivo detection of angiogenesis in inflammatory bowel disease (IBD) patients. METHODS: Conventional and NBI colonoscopy was performed in...AIM: To investigate whether narrow band imaging (NBI) is a useful tool for the in vivo detection of angiogenesis in inflammatory bowel disease (IBD) patients. METHODS: Conventional and NBI colonoscopy was performed in 14 patients with colonic inflammation (8 ulcerative colitis and 6 Crohn’s disease). Biopsy samples were taken and CD31 expression was assayed immuno- histochemically; microvascular density was assessed by vessel count. RESULTS: In areas that were endoscopically normal but positive on NBI, there was a significant (P < 0.05) increase in angiogenesis (12 ± 1 vessels/field vs 18 ± 2 vessels/field) compared with areas negative on NBI. In addition, in areas that were inflamed on white light endoscopy and positive on NBI, there was a significant (P < 0.01) increase in vessel density (24 ± 7 vessels/f ield) compared with NBI-negative areas.CONCLUSION: NBI may allow in vivo imaging of intestinal angiogenesis in IBD patients.展开更多
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
文摘Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types.
文摘Ruth and Mary are two heroines in Eugene O'Neill's plays Beyond the Horizon, and Long Day's Journey into Night. They have some similarities: when they are young, they are beautiful, native and full of hope towards the future life, but both make wrong choices; in the following years, both suffer a lot from these wrong choices, and feel regretful. This paper tries to explore these two tragic female images.
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.
文摘Research on the range anomaly suppression algorithm in laser radar (ladar) range images is significant in the application and development of ladar. But most of existing algorithms cannot protect the edge and linear target well while suppressing the range anomaly. Aiming at this problem, the differences among the edge, linear target, and range anomaly are analyzed and a novel algo- rithm based on neighborhood pixels detection is proposed. Firstly, the range differences between current pixel and its neighborhood pixels are calculated. Then, the number of neighborhood pixels is detected by the range difference threshold. Finally, whether the current pixel is a range anomaly is distinguished by the neighbor- hood pixel number threshold. Experimental results show that the new algorithm not only has a better range anomaly suppression performance and higher efficiency, but also protects the edge and linear target preferably compared with other algorithms.
基金Institutional Fund Projects under Grant No.(IFPIP:638-830-1443).
文摘The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s.
基金Natural Science Foundation of Shandong Province,China(Grant No.ZR202111230202).
文摘Hyperspectral image classification stands as a pivotal task within the field of remote sensing,yet achieving highprecision classification remains a significant challenge.In response to this challenge,a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm(AFLA-SCNN)is proposed.The Adaptive Fick’s Law Algorithm(AFLA)constitutes a novel metaheuristic algorithm introduced herein,encompassing three new strategies:Adaptive weight factor,Gaussian mutation,and probability update policy.With adaptive weight factor,the algorithmcan adjust theweights according to the change in the number of iterations to improve the performance of the algorithm.Gaussianmutation helps the algorithm avoid falling into local optimal solutions and improves the searchability of the algorithm.The probability update strategy helps to improve the exploitability and adaptability of the algorithm.Within the AFLA-SCNN model,AFLA is employed to optimize two hyperparameters in the SCNN model,namely,“numEpochs”and“miniBatchSize”,to attain their optimal values.AFLA’s performance is initially validated across 28 functions in 10D,30D,and 50D for CEC2013 and 29 functions in 10D,30D,and 50D for CEC2017.Experimental results indicate AFLA’s marked performance superiority over nine other prominent optimization algorithms.Subsequently,the AFLA-SCNN model was compared with the Spectral Convolutional Neural Network model based on Fick’s Law Algorithm(FLA-SCNN),Spectral Convolutional Neural Network model based on Harris Hawks Optimization(HHO-SCNN),Spectral Convolutional Neural Network model based onDifferential Evolution(DE-SCNN),SpectralConvolutionalNeuralNetwork(SCNN)model,and SupportVector Machines(SVM)model using the Indian Pines dataset and PaviaUniversity dataset.The experimental results show that the AFLA-SCNN model outperforms other models in terms of Accuracy,Precision,Recall,and F1-score on Indian Pines and Pavia University.Among them,the Accuracy of the AFLA-SCNN model on Indian Pines reached 99.875%,and the Accuracy on PaviaUniversity reached 98.022%.In conclusion,our proposed AFLA-SCNN model is deemed to significantly enhance the precision of hyperspectral image classification.
文摘This paper is going to do a research on the book The Bonesetter's Daughter and will make an analysis of mysterious images appear in the novel which can be considered as symbols that reflect the culture of orient. And it also looks into the identity issue of Chinese American women from postcolonial perspective.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘The paper mainly talks about the background of S. T. Coleridge and the images of The Rime of the AncientMariner. As for the images, the wind, the albatross and the snake will be thoroughly discussed. There are manydifferent images which also have different meanings and connotations in the context. What's more, the poemexpresses the theme of the metabolic relationships between men and nature: harmony, conflict or compromise.
基金Supported by the National Natural Science Foundation of China (51075029)
文摘Complex terrain and working equipment in coal mine underground need a way to ensure coal mine safety. In this paper, the way to monitor the real-time status of underground equipment was put forward, and it was proved to be effective as commanding and dispatching system. Monitoring system for underground equipment based on panoramic images was effectively combined with real-time sensor data and static panoramic images of underground surrounding, which not only realizes real-time status monitoring for underground equipment, but also gets a direct scene for underground surrounding. B/S mode was applied in the monitoring system and this is convenient for users to monitor the equipment. Meantime, it can reduce the waste of the data resource.
文摘William Faulkner is considered to be the most influential writers of America in the twentieth century. He has created a lot of great works in his lifetime, and The Sound and the Fury, which becomes the focus of study and research among critics, is one of the outstanding representatives. As a famous southern writer, Faulkner' s concentrations not only just rely on the person' s inner world but also divergence into the broad external space. By observing male' s oppression and destruction toward female, Faulkner elaborates feminine crisis from another angle which reflects his strong humanistic concern. This paper tries to explore women' s images, which include Caddy, little Quentin, Dilsey and Mrs. Comoson. under the traditional patriarchy YoknaDatawoha County.
文摘<strong>Background:</strong> Worldwide, prostatic adenocarcinoma is the most common tumour type among men. <strong>Aim:</strong> The aim of the present investigation was to develop a computer program to identify normal prostate biopsies and distinguish them from biopsies showing premalignant alterations (LGPIN, HGPIN) and adenocarcinoma. <strong>Method:</strong> Prostate biopsies (n = 2094) taken from 191 consecutive men during 2016 were stained with triple immunehistochemisty (antibodies to AMACRA, p63 and CK 5). Digital images of the biopsies were obtained with a scanning microscope and used to develop an automatic computer program (CelldaTM), intended to identify the morphological alterations. Visual microscopic finding was used as a reference. <strong>Result:</strong> Of the 191 men, 121 (63.4%) were diagnosed as having prostate adenocarcinoma and 70 (36.6%) as having no malignancy on the basis of the visual microscopy. In comparison, computer analysis identified 134 (70.2%) men with malignant disease and 57 (29.8%) with non-malignant disease after exclusion of artifacts, which constituted 10.4% of areas (indicated as malignant disease). Discrepant results were recorded in 15 (7.9%) men, and in 14 of these cases, HGPIN and areas suggestive of early invasion were common. Thus, it was uncertain whether these cases should be regarded as malignant or not. The agreement between the visual examination and the computer analysis was 92.1% (kappa value 0.823, sensitivity 99.2 and specificity was 0.80). <strong>Conclusion:</strong> It seems that computer analysis could serve as an adjunct to simplify and shorten the diagnostic procedure, first of all by ensuring that normal prostate biopsies are sorted out from those sent for visual microscopic evaluation.
文摘In literature, features based on First and Second Order Statistics that characterizes textures are used for classification of images. Features based on statistics of texture provide far less number of relevant and distinguishable features in comparison to existing methods based on wavelet transformation. In this paper, we investigated performance of texture-based features in comparison to wavelet-based features with commonly used classifiers for the classification of Alzheimer’s disease based on T2-weighted MRI brain image. The performance is evaluated in terms of sensitivity, specificity, accuracy, training and testing time. Experiments are performed on publicly available medical brain images. Experimental results show that the performance with First and Second Order Statistics based features is significantly better in comparison to existing methods based on wavelet transformation in terms of all performance measures for all classifiers.
基金the National Natural Science Foundation of China under Grant No. 61672181, No. 51679058Natural Science Foundation of Heilongjiang Province under Grant No. F2016005. We would like to thank our teacher for guiding this paper. We would also like to thank classmates for their encouragement and help.
文摘The classification and identification of brain diseases with multimodal information have attracted increasing attention in the domain of computer-aided. Compared with traditional method which use single modal feature information, multiple modal information fusion can classify and diagnose brain diseases more comprehensively and accurately in patient subjects. Existing multimodal methods require manual extraction of features or additional personal information, which consumes a lot of manual work. Furthermore, the difference between different modal images along with different manual feature extraction make it difficult for models to learn the optimal solution. In this paper, we propose a multimodal 3D convolutional neural networks framework for classification of brain disease diagnosis using MR images data and PET images data of subjects. We demonstrate the performance of the proposed approach for classification of Alzheimer’s disease (AD) versus mild cognitive impairment (MCI) and normal controls (NC) on the Alzheimer’s Disease National Initiative (ADNI) data set of 3D structural MRI brain scans and FDG-PET images. Experimental results show that the performance of the proposed method for AD vs. NC, MCI vs. NC are 93.55% and 78.92% accuracy respectively. And the accuracy of the results of AD, MCI and NC 3-classification experiments is 68.86%.
文摘After the introduction of tourist resources in Wunvfeng National Forest Park, the paper had planed its overall image from the perspectives of concept design, visual identity, behavioral norms and audio identity. The slogan of Wunvfeng National Forest Park had been identified as "tour of nature and mythology-Wunvfeng", and the park's emblem, symbolic mascots, spokesman of tourism image and tourist souvenirs had been set, so as to better display tourist advantages of Wunvfeng National Forest Park and create more economic and social benefits.
基金Medical Innovation Program of Fujian Province,No.2018-CX-30Startup Fund for Scientific Research of Fujian Medical University,No.2018QH1054.
文摘BACKGROUND The activity staging of Crohn’s disease(CD)in the terminal ileum is critical in developing an accurate clinical treatment plan.The activity of terminal ileum CD is associated with the microcirculation of involved bowel walls.Dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI)and diffusionweighted imaging(DWI)can reflect perfusion and permeability of bowel walls by providing microcirculation information.As such,we hypothesize that DCE-MRI and DWI parameters can assess terminal ileum CD,thereby providing an opportunity to stage CD activity.AIM To evaluate the value of DCE-MRI and DWI in assessing activity of terminal ileum CD.METHODS Forty-eight patients with CD who underwent DCE-MRI and DWI were enrolled.The patients’activity was graded as remission,mild and moderate-severe.The transfer constant(Ktrans),wash-out constant(Kep),and extravascular extracellular volume fraction(Ve)were calculated from DCE-MRI and the apparent diffusion coefficient(ADC)was obtained from DWI.Magnetic Resonance Index of Activity(MaRIA)was calculated from magnetic resonance enterography.Differences in these quantitative parameters were compared between normal ileal loop(NIL)and inflamed terminal ileum(ITI)and among different activity grades.The correlations between these parameters,MaRIA,the Crohn’s Disease Activity Index(CDAI),and Crohn’s Disease Endoscopic Index of Severity(CDEIS)were examined.Receiver operating characteristic curve analyses were used to determine the diagnostic performance of these parameters in differentiating between CD activity levels.RESULTS Higher Ktrans(0.07±0.04 vs 0.01±0.01),Kep(0.24±0.11 vs 0.15±0.05)and Ve(0.27±0.07 vs 0.08±0.03),but lower ADC(1.41±0.26 vs 2.41±0.30)values were found in ITI than in NIL(all P<0.001).The Ktrans,Kep,Ve and MaRIA increased with disease activity,whereas the ADC decreased(all P<0.001).The Ktrans,Kep,Ve and MaRIA showed positive correlations with the CDAI(r=0.866 for Ktrans,0.870 for Kep,0.858 for Ve,0.890 for MaRIA,all P<0.001)and CDEIS(r=0.563 for Ktrans,0.567 for Kep,0.571 for Ve,0.842 for MaRIA,all P<0.001),while the ADC showed negative correlations with the CDAI(r=-0.857,P<0.001)and CDEIS(r=-0.536,P<0.001).The areas under the curve(AUC)for the Ktrans,Kep,Ve,ADC and MaRIA values ranged from 0.68 to 0.91 for differentiating inactive CD(CD remission)from active CD(mild to severe CD).The AUC when combining the Ktrans,Kep and Ve was 0.80,while combining DCE-MRI parameters and ADC values yielded the highest AUC of 0.95.CONCLUSION DCE-MRI and DWI parameters all serve as measures to stage CD activity.When they are combined,the assessment performance is improved and better than MaRIA.
文摘AIM: To investigate whether narrow band imaging (NBI) is a useful tool for the in vivo detection of angiogenesis in inflammatory bowel disease (IBD) patients. METHODS: Conventional and NBI colonoscopy was performed in 14 patients with colonic inflammation (8 ulcerative colitis and 6 Crohn’s disease). Biopsy samples were taken and CD31 expression was assayed immuno- histochemically; microvascular density was assessed by vessel count. RESULTS: In areas that were endoscopically normal but positive on NBI, there was a significant (P < 0.05) increase in angiogenesis (12 ± 1 vessels/field vs 18 ± 2 vessels/field) compared with areas negative on NBI. In addition, in areas that were inflamed on white light endoscopy and positive on NBI, there was a significant (P < 0.01) increase in vessel density (24 ± 7 vessels/f ield) compared with NBI-negative areas.CONCLUSION: NBI may allow in vivo imaging of intestinal angiogenesis in IBD patients.