A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive...A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio...This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.展开更多
By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions...The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.展开更多
One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transfor...One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transform method (ETM)) for computing delay differential equations (DDEs). Here, a reconstructed Elzaki transform method (RETM) is proposed for the solution of DDEs where Mamadu-Njoseh polynomials are applied as basis functions in the approximation of the analytic solution. Using this strategy, a numerical illustration as in Ref.[1] is provided to the RETM as a basis for comparison to guarantee accuracy and consistency of the method. All numerical computations were performed with MAPLE 18 software.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
This paper deals with H-stability of the Runge-Kutta methods with a general variable stepsize for the system of pantograph equations with two delay terms. It is shown that the Runge-Kutta methods with a regular matrix...This paper deals with H-stability of the Runge-Kutta methods with a general variable stepsize for the system of pantograph equations with two delay terms. It is shown that the Runge-Kutta methods with a regular matrix A are H-stable if and only if the modulus of the stability function at infinity is less than 1.展开更多
In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniq...In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.展开更多
This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable....This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.展开更多
In this paper,by using Schaefer fixed-point theorem,the existence of mild solutions of semilinear impulsive delay differential equations with nonlocal conditions is studied.The results obtained are a generalization an...In this paper,by using Schaefer fixed-point theorem,the existence of mild solutions of semilinear impulsive delay differential equations with nonlocal conditions is studied.The results obtained are a generalization and continuation of the recent results on this issue.In the end,an example is given to show the application of the results.展开更多
This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment ...This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.展开更多
By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalizat...By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalization of the results developed by W. Layton to the case of multiple delays.展开更多
In this paper,some sufficient conditions for oscillation of a first order delay differential equation with oscillating coefficients of the formx′(t)+p(t)x(t-τ)=0are established,which improve and generalize some of t...In this paper,some sufficient conditions for oscillation of a first order delay differential equation with oscillating coefficients of the formx′(t)+p(t)x(t-τ)=0are established,which improve and generalize some of the known results in the literature.展开更多
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established re...By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.展开更多
文摘A class of second order nonlinear differential equations with delay depenging on the unknown function of the fromin the case where ∫0∞ ds/r(s) < ∞ is studied. Various classifications of their eventually positive solutions are given in terms of their asymptotic magnitudes, and necessary as well as sufficient conditions for the existence of these solutions are also obtained.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1.
基金Supported by the Natural Science Foundation of Guangdong Province(032469)
文摘By utilizing a fixed point theorem on cone, some new results on the existence ofpositive periodic solutions for nonautonomous differential equations with delay are derived.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
基金Natural Science Foundation of Shanghai,China (No.19ZR1400500)。
文摘The finite-time stability and the finite-time contractive stability of solutions for nonlinear fractional differential equations with bounded delay are investigated. The derivative of Lyapunov function along solutions of the considered system is defined in terms of the Caputo fractional Dini derivative. Based on the Lyapunov-Razumikhin method, several sufficient criteria are established to guarantee the finite-time stability and the finite-time contractive stability of solutions for the related systems. An example is provided to illustrate the effectiveness of the obtained results.
文摘One of the solution techniques used for ordinary differential equations, partial and integral equations is the Elzaki Transform. This paper is an extension of Mamadu and Njoseh [1] numerical procedure (Elzaki transform method (ETM)) for computing delay differential equations (DDEs). Here, a reconstructed Elzaki transform method (RETM) is proposed for the solution of DDEs where Mamadu-Njoseh polynomials are applied as basis functions in the approximation of the analytic solution. Using this strategy, a numerical illustration as in Ref.[1] is provided to the RETM as a basis for comparison to guarantee accuracy and consistency of the method. All numerical computations were performed with MAPLE 18 software.
基金supported by the National Natural Science Foundation of China(61370136)the Hainan Province Science and Technology Cooperation Fund Project(KJHZ2015-36)the Hainan Province Introduced and Integrated Demonstration Projects(YJJC20130009)
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘This paper deals with H-stability of the Runge-Kutta methods with a general variable stepsize for the system of pantograph equations with two delay terms. It is shown that the Runge-Kutta methods with a regular matrix A are H-stable if and only if the modulus of the stability function at infinity is less than 1.
文摘In this paper, we show a fixed point theorem which deduces to both of Lou’s fixed point theorem and de Pascale and de Pascale’s fixed point theorem. Moreover, our result can be applied to show the existence and uniqueness of solutions for fractional differential equations with multiple delays. Using the theorem, we discuss the fractional chaos neuron model.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 )
文摘This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.
基金National Natural Science Foundation of China(No.10971139)Fundamental Research Funds for the Central Universities,China(No.B081)
文摘In this paper,by using Schaefer fixed-point theorem,the existence of mild solutions of semilinear impulsive delay differential equations with nonlocal conditions is studied.The results obtained are a generalization and continuation of the recent results on this issue.In the end,an example is given to show the application of the results.
文摘This paper proves that, under the local Lipschitz condition, the stochastic functional differential equations with infinite delay have global solutions without the linear growth condition. Furthermore, the pth moment exponential stability conditions are given. Finally, one example is presented to illustrate our theory.
基金The second author partially supported by NSFC (10571179, 10871203) GrantProgramfor New Century Excellent Talents in University of Ministry of Eduction of China
文摘By Fourier analysis techniques and Schauder fixed point theorem, we study the existence of periodic solutions for a class of even order differential equations with multiple delays. The result obtained is a generalization of the results developed by W. Layton to the case of multiple delays.
基金This project is supported by the NNSF of China (19831030).
文摘In this paper,some sufficient conditions for oscillation of a first order delay differential equation with oscillating coefficients of the formx′(t)+p(t)x(t-τ)=0are established,which improve and generalize some of the known results in the literature.
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘By the use of the Liapunov functional approach, a new result is obtained to ascertain the asymptotic stability of zero solution of a certain fourth-order non-linear differential equation with delay. The established result is less restrictive than those reported in the literature.