期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Flow field effect of delayed neutron precursors in liquid-fueled molten salt reactors 被引量:2
1
作者 Xian-Di Zuo Mao-Song Cheng +2 位作者 Yu-Qing Dai Kai-Cheng Yu Zhi-Min Dai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第8期16-32,共17页
In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DN... In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DNPs in channel-type liquid-fueled MSRs,a three-dimensional space-time dynamics code,named ThorCORE3D,that couples neutronics,core thermalhydraulics,and a molten salt loop system was developed and validated with the Molten Salt Reactor Experiment(MSRE)benchmarks.The effects of external loop recirculation time,fuel flow rate,and core flow field distribution on the delayed neutron fraction loss of MSRE at steadystate were modeled and simulated using the ThorCORE3D code.Then,the flow field effect of the DNPs on the system responses of the MSRE in the reactivity insertion transient under different initial conditions was analyzed systematically for the channel-type liquid-fueled MSRs.The results indicate that the flow field condition has a significant effect on the steady-state delayed neutron fractions and will further affect the transient power and temperature responses of the reactor system.The analysis results for the effect of the DNP flow field can provide important references for the design optimization and safety analysis of liquid-fueled MSRs. 展开更多
关键词 Molten salt reactor delayed neutron precursor Nodal expansion method Coupled neutronics and thermal-hydraulics
下载PDF
Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt 被引量:2
2
作者 张大林 秋穗正 +1 位作者 刘长亮 苏光辉 《Chinese Physics C》 SCIE CAS CSCD 北大核心 2008年第8期624-628,共5页
The Molten Salt Reactor (MSR), one of the ‘Generation Ⅳ' concepts, is a liquid-fuel reactor, which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt. Th... The Molten Salt Reactor (MSR), one of the ‘Generation Ⅳ' concepts, is a liquid-fuel reactor, which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt. The study on its neutronics considering the fuel salt flow, which is the base of the thermal-hydraulic calculation and safety analysis, must be done. In this paper, the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method. The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method, and the discretization equations are computed by the source iteration method. The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained. The numerical calculated results show that, the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor; however, it affects the distribution of the delayed neutron precursors significantly, especially the long-lived one. In addition, it could be found that the delayed neutron precursors influence the neutronics slightly under the steady condition. 展开更多
关键词 MSR steady state neutronICS flow effect delayed neutron precursors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部