Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterize...Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterized quantitatively by fractal models. Fractal dimensions calculated by several fractal models including box-counting model, perimeter-area (P-A) model, and number-area (N-A) model show the gradual change from outer banding to inner banding, indicating a decrease in area percentage, in irregularity, in shape and in grain size, and an increase in the numbers of grains. These results may imply an inward growth of sphalerite during mineralization, and self-organization properties are involved in the nonlinear process of mineralization.展开更多
Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin ...Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin whose basement consists of the Paleozoic strata. Mesozoic paralic and continental sediments with a thickness of about 20000m deposited in the basin. In the Paleocene, gypsum\|salt\|bearing strata with a thickness of more than 1000m accumulated. In the Cenozoic, collision of the Indian plate with the Eurasian plate resulted in strong folding and napping and subsequent extensions in the Oligocene and Pliocene. The extensions were responsible for alkaline magmatic intrusion in the centre and alkaline magmatic extrusion in the east.Faulting is well developed. N\|S\|trending Bijiang fault with a length of 120km links with the Jinshajiang fracture zone in the north and with the Lancangjiang fracture zone in the south, controlling on the Cenozoic Lanping rifting basin and acting as passage\|way for ore fluids.展开更多
The Tayuan(Cu-Mo)-Pb-Zn deposit is located in the northern part of Daxinganling,NE China.Lenticular ore body occurs in the skarn zone.The skarn minerals mainly include garnet,pyroxene,epidote and wollastonite.Electron...The Tayuan(Cu-Mo)-Pb-Zn deposit is located in the northern part of Daxinganling,NE China.Lenticular ore body occurs in the skarn zone.The skarn minerals mainly include garnet,pyroxene,epidote and wollastonite.Electron microprobe analysis shows that the end member of garnet is mainly andradite(Ad_(62-97)Gr_(11-45),the pyroxene is mainly diopside,and epidote is mainly clinozoisite.These characteristics indicate that the Tayuan polymetallic skarn deposit is mainly calcareous skarn.Sometimes the content zonation can be observed in garnets.With one garnet crystal,content is shifty from the core to the rim.In general,the iron content in the core is higher than in the edge.The content in the garnet shows that the garnet in the Tayuan deposit formed from weak oxidation in alkaline environment with the oxygen fugacity increasing,suggesting that the hydrothermal fluid evolved from an acidic to a slight alkaline state.In the Tayuan polymetallic deposit,the ratio of Mn/Fe in pyroxene is about 1.3,and of Mg/Fe,it is about 2.The components of garnet in the Tayuan deposit plot in the field of the typical skarn Zn,Cu,Mo deposits in the world.展开更多
The Sichuan–Yunnan–Guizhou(SYG)Zn–Pb metallogenic zone in SW China contains>400 carbonatehosted hydrothermal Zn–Pb deposits.Some of these,such as the Huize,Tianbaoshan,and Daliangzi deposits,are super-large dep...The Sichuan–Yunnan–Guizhou(SYG)Zn–Pb metallogenic zone in SW China contains>400 carbonatehosted hydrothermal Zn–Pb deposits.Some of these,such as the Huize,Tianbaoshan,and Daliangzi deposits,are super-large deposits with significant reserves of Cd,Ge,and Ag.However,the sources of these metals remain controversial.This study investigated the Cd isotopic geochemistry of the Huize deposit,the largest Zn–Pb deposit in the SYG area.Sphalerites formed at three stages in the deposit have different colors:black or dark brown(Stage I),red(Stage II),and light-yellow(Stage III).The d^(114/110)Cd values of the sphalerites are in the order Stage III<Stage I<Stage II.Kinetic isotopic fractionation is likely the key factor causing the lower δ^(114/110)Cd values in the early formed Stage I sphalerites than in laterformed Stage II sphalerites,with cooling of ore-forming fluids being responsible for the still lower values of the Stage III sphalerites.In galena,the δ^(114/110)Cd values are inversely correlated with Cd contents and tend to be higher in high-Zn galena.We speculate that Cd isotopic fractionation was significant during the precipitation of sphalerite and galena,with light Cd isotopes being enriched in galena rather than sphalerite.Comparison of the Cd isotopic signatures and Zn/Cd ratios of different endmembers suggests that the δ^(114/110)Cd values and Zn/Cd ratios of sphalerite from the Huize deposit,as well as other largescale deposits from the SYG area,are lie in those range of Emeishan basalts and sedimentary rocks and the mean δ^(114/110)Cd values of these deposits show good negative correlation with 1/Cd,suggesting that the ore-forming materials of these deposits were derived from the mixing of Emeishan basalts and sedimentary rocks.This study demonstrates that Cd isotopes can be useful proxies in elucidating ore genesis in large Zn–Pb deposits.展开更多
The western margin of Yangtze Craton is known as a significant sediment-hosted base-metal aggregate cluster,especially for Pb-Zn deposits in China,e.g.Jinding,Daliangzi,Tianbaoshan, Kuangshanchang and Qinlinchang depo...The western margin of Yangtze Craton is known as a significant sediment-hosted base-metal aggregate cluster,especially for Pb-Zn deposits in China,e.g.Jinding,Daliangzi,Tianbaoshan, Kuangshanchang and Qinlinchang deposits.In comparison with the classic MVT deposits in the world, based on the basic geology of the sediment-hosted Pb-Zn deposits,this paper focuses on temporal-spatial distribution of this deposit to further discuss its large scale mineralization and tectonic evolution history.In the SW Sanjiang Thethys,Jinding deposit is typically thrust fault-controlled and hosted mainly in the sandstones and breccia-bearing sandstones,whereas MVT-type deposits are controlled by lithology and faulting/fracturing with a strong preference for carbonate-hosted rocks.Most importantly,Jinding Pb-Zn deposit differs from the other types of sediment-hosted Pb-Zn deposits in which it was formed in a strongly deformed foreland basin within a continental collision zone.In the Kangdian area,the sediment-hosted Pb-Zn deposits were formed in the extensional basin on the side of the continental orogenic belt along the Yangtze Craton.Compared with classic MVT deposits,the Pb-Zn deposits in the Kangdian area belong to MVT deposits.This paper is significant not only for interpretation of the genesis of sediment-hosted Pb-Zn deposits but also for exploiting large base metal deposits in large sedimentary target areas.展开更多
The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million ton...The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.展开更多
The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Sichuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in th...The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Sichuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in this area. It consists of three main orebodies, whose Pb+Zn reserves are more than 0.2 million ton. This paper analyzes the sulfur isotopic composition of these orebodies. The data show that the ore minerals (galena, sphalerite, pyrite) in these orebodies are enriched in heavy sulfur, with δ34SV-CDT values varying between 8.35‰ and 14.44‰, i.e. the δ34SV-CDT values of pyrite are between 12.81‰ and 14.44‰, the mean value is 13.40‰; the δ34SV-CDT values of sphalerite are range from 10.87‰ to 14.00‰, the mean value is 12.53‰; the δ34SV-CDT values of galena are range from 8.35‰ to 9.83‰, the mean value is 8.84‰, and they have the feature of δ34Spyrite>δ34Ssphalerite>δ34Sgalena, which indicates the sulfur isotope in ore-forming fluids has attained equilibrium. The δ34S V-CDT values of the deposit are close to those of sulfates from carbonate strata of different ages in the ore-field (15‰), which suggests that the sulfur in the ore-forming fluids should be derived from the thermo-chemical sulfate reduction of sulfates from the sedimentary strata.展开更多
The Maoping Pb-Zn deposit(~3 Mt Pb+Zn reserves with grades of 12-30 wt%)is one of the largest Pb-Zn deposits in the Sichuan-Yunnan-Guizhou(SYG)metallogenic province,which has contributed a tremendous amount of lead an...The Maoping Pb-Zn deposit(~3 Mt Pb+Zn reserves with grades of 12-30 wt%)is one of the largest Pb-Zn deposits in the Sichuan-Yunnan-Guizhou(SYG)metallogenic province,which has contributed a tremendous amount of lead and zinc resources for China.To obtain a further understanding of the sources of ore-forming materials and ore genesis of the deposit,S-Pb isotopes of sulfides and C-O isotopes of ore-stage calcites were systematically collected from representative orebodies at different elevations with a Finnigan MAT-253 mass spectrometer.The calcites separated from the sulfides of the NoⅠand NoⅡorebodies shared identical b13 CPDB values(-5.3 to-0.8‰)andδ18OSMOW values(+14.5 to+21.8‰)with those of the calcites in the SYG region,suggesting that CO2 in regional ore-forming fluids possibly had a homologous C-O source that originated from a ternary mixture of the dissolution of marine carbonate rocks,degassing process of the Emeishan mantle plume,and dehydroxylation of sedimentary organic matter.The No.Ⅰ-1 and No.Ⅰ-2 orebody was hosted in the same strata,but the sulfur source of No.Ⅰ-1 orebody(+13.1 to+19.0‰)with equilibrated sulfur fractionation(δ34Sspbaierite-<δ34Sgalena)and No.Ⅰ-2 orebody(+18.0 to+21.8‰)with sulfur equilibrium fractionation(δ34Sspnaierite>δ34-Sgalena)were different.They were derived from the allopatry thermochemical sulfate reduction(TSR)of overlying Carboniferous sulfates in the ore-hosting strata and local TSR of sulfates in the ore-bearing Upper Devonian Zaige Formation,respectively.The narrow and uniform Pb isotopic ratios of single galena grains collected from sulfides with 206Pb/204Pb of 18.713-18.759,207Pb/204Pb of 15.772-15.776 and 208Pb/204Pb of39.383-39.467 indicate a well-mixed metal source(s)that consist of Proterozoic Kunyang and Huili Group basement rocks and Devonian to Middle Permian ore-hosting sedimentary rocks.Besides,the late Permian Emeishan basalts are difficult to contribute metals for regional Pb-Zn mineralization despite a closely spatial relationship with the distribution of the Pb-Zn deposit.This is supported by Pb isotopic ratios plotting above the average upper crustal Pb evolution curves and staying far away from that of the agecorrected Emeishan basalts.Hence,taking into account of the similarities in tectonic setting,ore-hosting rock,ore assemblage,wall rock alteration,ore-controlling structure,and ore-forming materials and the differences in relationship with regional magmatism,fluid inclusion characteristic and ore grade between the Maoping deposit and typical MVT Pb-Zn deposit,the ore genesis of the Maoping deposit should be an MVT like Pb-Zn deposit.展开更多
The Sichuan-Yunnan-Guizhou(SYG)metallogenic province of southwest China is one of the most important Zn-Pb ore zones in China,with^200 Mt ZnPb ores at mean grades of 10 wt.%Zn and 5 wt.%Pb.The source and mechanism of ...The Sichuan-Yunnan-Guizhou(SYG)metallogenic province of southwest China is one of the most important Zn-Pb ore zones in China,with^200 Mt ZnPb ores at mean grades of 10 wt.%Zn and 5 wt.%Pb.The source and mechanism of the regional Zn-Pb mineralization remain controversial despite many investigations that have been conducted.The Wusihe Zn-Pb deposit is a representative large-scale Zn-Pb deposit in the northern SYG,which mainly occurs in the Dengying Formation and yields Zn-Pb resources of^3.7 Mt.In this paper,Zn and S isotopes,and Fe and Cd contents of sphalerite from the Wusihe deposit were investigated in an attempt to constrain the controls on Zn and S isotopic variations,the potential sources of ore-forming components,and the possible mineralization mechanisms.Both theδ66Zn andδ34S values in sphalerite from the Wusihe deposit increase systematically from the bottom to the top of the strata-bound orebodies.Such spatial evolution inδ66Zn andδ34S values of sphalerite can be attributed to isotopic Rayleigh fractionation during sphalerite precipitation with temperature variations.The strong correlations between the Zn-S isotopic compositions and Fe-Cd concentrations in sphalerite suggest that their variations were dominated by a similar mechanism.However,the Rayleigh fractionation mechanism cannot explain the spatial variations of Fe and Cd concentrations of sphalerite in this deposit.It is noted that the bottom and top sphalerites from the strata-bound orebodies document contrasting Zn and S isotopic compositions which correspond to the Zn and S isotopic characteristics of basement rocks and host rocks,respectively.Therefore,the mixing of two-source fluids with distinct Zn-S isotopic signatures was responsible for the spatial variations of Zn-S isotopic compositions of sphalerite from the Wusihe deposit.The fluids from basement rocks are characterized by relatively lighter Zn(~0.2‰)and S(~5‰)isotopic compositions while the fluids from host rocks are marked by relatively heavier Zn(~0.6‰)and S(~15‰)isotopic compositions.展开更多
The Erlihe Pb-Zn deposit is an important mine of the Pb-Zn metallogenic zone in the South Qinling Orogen.It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs c...The Erlihe Pb-Zn deposit is an important mine of the Pb-Zn metallogenic zone in the South Qinling Orogen.It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold.Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials.The Re-Os isotopic data of four pyrite samples construct an isochron,yielding a weighted average age of 226±17 Ma(mean square weighted deviation=1.7),which is considered the main mineralization age.A dioritic porphyrite vein sample,showing weaker mineralization,was also dated using the SHRIMP zircon UPb isotopic method to constrain the youngest metallogenic age of the ore deposit,because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field,but also the main ore bodies.The dioritic porphyrite sample yields a weighted mean ^(206)Pb/^(238)U age of 221±3 Ma,which is slightly younger than the Re-Os isotopic isochron age of the pyrites,considered as the upper age limit of the mineralization,namely the ending age of the mineralization.The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid,and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle.The Erlihe Pb-Zn deposit and associated dioritic porphyrite vein,important records of Qinling tectonic-magmatism-mineralization activities,were formed during the Triassic collisional orogeny processes.展开更多
Analyses of fluid\|inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75-358 and Cl/Br 67-394, respectively, and this variation trend coincides with the seawater evaporation trajector...Analyses of fluid\|inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75-358 and Cl/Br 67-394, respectively, and this variation trend coincides with the seawater evaporation trajectory on the basis of the Na/Br and Cl/Br ratios. The average Cl/Br and Na/Br ratios of mineralizing fluids are 185 and 173 respectively, which are very close to the ratios (120 and 233) of the residual evaporated seawater past the point of halite precipitation. It is suggested that the original mineralizing brine was derived from highly evaporated seawater with a high salinity. However, the inclusion fluids have absolute Na values of \{69.9\}-\{2606.2\} mmol kg\+\{-1\} and Cl values of \{106.7\}-\{1995.5\} mmol kg\+\{-1\}. Most of the values are much less than those of seawater: Na, 485 mmol kg\+\{-1\} and Cl, 566 mmol kg\+\{-1\}, respectively; the salinity measured from fluid inclusions of the deposits ranges from \{2.47 wt%\} to \{15.78 wt%\} NaCl equiv. The mineralizing brine has been diluted. The \{δ\{\}\+\{18\}O\} and δD values of ore\|forming fluids vary from \{-8.21‰\} to \{9.51‰\} and from \{-40.3‰\} to \{-94.3‰\}, respectively. The δD values of meteoric water in this region varied from \{-80‰\} to \{-100‰\} during the Jurassic. This evidenced that the ore\|forming fluids are the mixture of seawater and meteoric water. Highly evaporated seawater was responsible for leaching and extracting Pb, Zn and Fe, and mixed with and diluted by descending meteoric water, which resulted in the formation of ores.展开更多
The Tianbaoshan Pb\|Zn deposit in Sichuan Province, exhibiting open\|space\|filling and/or replacement textures, occurs as being of vein style in the Sinian (Late Proterozoic) carbonate rocks, and is simple in ore com...The Tianbaoshan Pb\|Zn deposit in Sichuan Province, exhibiting open\|space\|filling and/or replacement textures, occurs as being of vein style in the Sinian (Late Proterozoic) carbonate rocks, and is simple in ore composition. A systematic study of lead isotope and rare\|earth elements reveals that the ore\|forming materials were derived from multiple sources. The ultimate source of the sulfur in all stages is seawater sulfate but the reducing mechanisms are different. The carbon was derived from marine carbonate and organic matter. The ore\|forming fluid, meteoric in origin, belongs to a Ca\+\{2+\}\|Mg\+\{2+\}\|Cl\+-\|HCO\+-\-3 type of weak acidic to alkalic solutions with a salinity of about 5 wt% NaCl. The ore was formed at the depth of about 1 km from 150 to 250℃ during the main stage of ore deposition. The heated meteoric water, after extracting ore materials from wall rocks, evolved into ore\|forming solution with a low salinity, in which metals were transported as chloride complexes such as PbCl, ZnCl and ZnCl. The metal\|bearing solution moved upward along deep faults to low\|pressure zones, where the metal ions reacted with reduced sulfur and were precipitated as sulfide minerals. The textures of the minerals were controlled by the rate at which the reduced sulfur was supplied.展开更多
The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province in the western Yangtze Block, is a key component of the low-temperature metallogenic domain in South China. In this area, more than 400 Pb-Zn deposits hav...The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province in the western Yangtze Block, is a key component of the low-temperature metallogenic domain in South China. In this area, more than 400 Pb-Zn deposits have been discovered, and the total proven reserves are up to 260 million tons with lead and zinc grade reaching 10%, even up to 30%.展开更多
基金the Open Fund of the State Key Laboratory of Geological Processes and Mineral Resources of Chinaan NSERC Discovery Research Grant (ERC-OGP0183993) NSFC (No. 40373003).
文摘Sphalerite banding is a common texture in Jinding (金顶) Pb-Zn deposit, Yunnan (云南), southwestern China. The frequency distribution and irregularity of sphalerite grains observed in the bandings are characterized quantitatively by fractal models. Fractal dimensions calculated by several fractal models including box-counting model, perimeter-area (P-A) model, and number-area (N-A) model show the gradual change from outer banding to inner banding, indicating a decrease in area percentage, in irregularity, in shape and in grain size, and an increase in the numbers of grains. These results may imply an inward growth of sphalerite during mineralization, and self-organization properties are involved in the nonlinear process of mineralization.
基金theNationalClimbingProgram(95 Pre .393 1 2 )andMLMRStrategicKeyProgram (95 0 110 3)
文摘Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin whose basement consists of the Paleozoic strata. Mesozoic paralic and continental sediments with a thickness of about 20000m deposited in the basin. In the Paleocene, gypsum\|salt\|bearing strata with a thickness of more than 1000m accumulated. In the Cenozoic, collision of the Indian plate with the Eurasian plate resulted in strong folding and napping and subsequent extensions in the Oligocene and Pliocene. The extensions were responsible for alkaline magmatic intrusion in the centre and alkaline magmatic extrusion in the east.Faulting is well developed. N\|S\|trending Bijiang fault with a length of 120km links with the Jinshajiang fracture zone in the north and with the Lancangjiang fracture zone in the south, controlling on the Cenozoic Lanping rifting basin and acting as passage\|way for ore fluids.
基金supported by the Natural Science Foundation of China(No.41203039)
文摘The Tayuan(Cu-Mo)-Pb-Zn deposit is located in the northern part of Daxinganling,NE China.Lenticular ore body occurs in the skarn zone.The skarn minerals mainly include garnet,pyroxene,epidote and wollastonite.Electron microprobe analysis shows that the end member of garnet is mainly andradite(Ad_(62-97)Gr_(11-45),the pyroxene is mainly diopside,and epidote is mainly clinozoisite.These characteristics indicate that the Tayuan polymetallic skarn deposit is mainly calcareous skarn.Sometimes the content zonation can be observed in garnets.With one garnet crystal,content is shifty from the core to the rim.In general,the iron content in the core is higher than in the edge.The content in the garnet shows that the garnet in the Tayuan deposit formed from weak oxidation in alkaline environment with the oxygen fugacity increasing,suggesting that the hydrothermal fluid evolved from an acidic to a slight alkaline state.In the Tayuan polymetallic deposit,the ratio of Mn/Fe in pyroxene is about 1.3,and of Mg/Fe,it is about 2.The components of garnet in the Tayuan deposit plot in the field of the typical skarn Zn,Cu,Mo deposits in the world.
基金This project was financially supported by the National Natural Science Foundation of China(Nos.41773012,42073010)a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry,Chinese Academy of SciencesScience and Technology Foundation of Guizhou Province([2019]1459)。
文摘The Sichuan–Yunnan–Guizhou(SYG)Zn–Pb metallogenic zone in SW China contains>400 carbonatehosted hydrothermal Zn–Pb deposits.Some of these,such as the Huize,Tianbaoshan,and Daliangzi deposits,are super-large deposits with significant reserves of Cd,Ge,and Ag.However,the sources of these metals remain controversial.This study investigated the Cd isotopic geochemistry of the Huize deposit,the largest Zn–Pb deposit in the SYG area.Sphalerites formed at three stages in the deposit have different colors:black or dark brown(Stage I),red(Stage II),and light-yellow(Stage III).The d^(114/110)Cd values of the sphalerites are in the order Stage III<Stage I<Stage II.Kinetic isotopic fractionation is likely the key factor causing the lower δ^(114/110)Cd values in the early formed Stage I sphalerites than in laterformed Stage II sphalerites,with cooling of ore-forming fluids being responsible for the still lower values of the Stage III sphalerites.In galena,the δ^(114/110)Cd values are inversely correlated with Cd contents and tend to be higher in high-Zn galena.We speculate that Cd isotopic fractionation was significant during the precipitation of sphalerite and galena,with light Cd isotopes being enriched in galena rather than sphalerite.Comparison of the Cd isotopic signatures and Zn/Cd ratios of different endmembers suggests that the δ^(114/110)Cd values and Zn/Cd ratios of sphalerite from the Huize deposit,as well as other largescale deposits from the SYG area,are lie in those range of Emeishan basalts and sedimentary rocks and the mean δ^(114/110)Cd values of these deposits show good negative correlation with 1/Cd,suggesting that the ore-forming materials of these deposits were derived from the mixing of Emeishan basalts and sedimentary rocks.This study demonstrates that Cd isotopes can be useful proxies in elucidating ore genesis in large Zn–Pb deposits.
基金supported by the National Basic Research Program(No.2009CB421008)the Fundamental Research Funds for the Central Universities (No.2010ZY02)+2 种基金China Postdoctoral Science Foundation (No.20090460400)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)the 111 Project(No.B07011)
文摘The western margin of Yangtze Craton is known as a significant sediment-hosted base-metal aggregate cluster,especially for Pb-Zn deposits in China,e.g.Jinding,Daliangzi,Tianbaoshan, Kuangshanchang and Qinlinchang deposits.In comparison with the classic MVT deposits in the world, based on the basic geology of the sediment-hosted Pb-Zn deposits,this paper focuses on temporal-spatial distribution of this deposit to further discuss its large scale mineralization and tectonic evolution history.In the SW Sanjiang Thethys,Jinding deposit is typically thrust fault-controlled and hosted mainly in the sandstones and breccia-bearing sandstones,whereas MVT-type deposits are controlled by lithology and faulting/fracturing with a strong preference for carbonate-hosted rocks.Most importantly,Jinding Pb-Zn deposit differs from the other types of sediment-hosted Pb-Zn deposits in which it was formed in a strongly deformed foreland basin within a continental collision zone.In the Kangdian area,the sediment-hosted Pb-Zn deposits were formed in the extensional basin on the side of the continental orogenic belt along the Yangtze Craton.Compared with classic MVT deposits,the Pb-Zn deposits in the Kangdian area belong to MVT deposits.This paper is significant not only for interpretation of the genesis of sediment-hosted Pb-Zn deposits but also for exploiting large base metal deposits in large sedimentary target areas.
基金jointly by National Basic Research Program of China(973 Program) (2007CB411402)the Knowledge innovation project of Chinese Academy of Sciences(KZCX2-YW-Q04-05, KZCX2-YW-111-03)the National Natural Science Foundation of China(No.40573036).
文摘The world-class Huize Pb-Zn deposits of Yunnan province,in southwestern China,located in the center of the Sichuan-Yunnan-Guizhou Pb-Zn polymetallic metallogenic province,has Pb+Zn reserves of more than 5 million tons at Pb+Zn grade of higher than 25%and contains abundant associated metals,such as Ag,Ge,Cd,and Ga.The deposits are hosted in the Lower Carboniferous carbonate strata and the Permian Emeishan basalts which distributed in the northern and southwestern parts of the orefield.Calcite is the only gangue mineral in the primary ores of the deposits and can be classified into three types,namely lumpy,patch and vein calcites in accordance with their occurrence.There is not intercalated contact between calcite and ore minerals and among the three types of calcite,indicating that they are the same ore-forming age with different stages and its forming sequence is from lumpy to patch to vein calcites. This paper presents the rare earth element(REE) and C-O isotopic compositions of calcites in the Huize Pb-Zn deposits.From lumpy to patch to vein calcites,REE contents decrease as LREE/ HREE ratios increase.The chondrite-normalized REE patterns of the three types of calcites are characterized by LREE-rich shaped,in which the lumpy calcite shows(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〈1,the patch calcite has(La)_N〈(Ce)_N〈(Pr)_N≈(Nd)_N with Eu/Eu~*〉1,and the vein calcite displays(La)_N〉(Ce)_N〉(Pr)_N〉(Nd)_N with Eu/Eu~*〉1.The REE geochemistry of the three types of calcite is different from those of the strata of various age and Permian Emeishan basalt exposed in the orefield.Theδ^(13) C_(PDb) andδ^(18)O_(Smow) values of the three types of calcites vary from-3.5‰to-2.1‰and 16.7‰to 18.6‰,respectively,falling within a small field between primary mantle and marine carbonate in theδ^(13)C_(PDb) vsδ^(18)O_(Smow) diagram. Various lines of evidence demonstrate that the three types of calcites in the deposits are produced from the same source with different stages.The ore-forming fluids of the deposits resulted from crustal -mantle mixing processes,in which the mantle-derived fluid components might be formed from degassing of mantle or/and magmatism of the Permian Emeishan basalts,and the crustal fluid was mainly provided by carbonate strata in the orefield.The ore-forming fluids in the deposits were homogenized before mineralization,and the ore-forming environment varied from relatively reducing to oxidizing.
基金supported by the National Basic Research Program of China (No. 2007CB411402)the National Natural Science Foundation of China (Grant No. 40573036)
文摘The Tianqiao Pb-Zn ore deposit of Guizhou Province, China, is located in the mid-east of the Sichuan-Yunnan-Guizhou Pb-Zn-Ag multi-metallic mineralization area, which is representative of the Pb-Zn ore de-posits in this area. It consists of three main orebodies, whose Pb+Zn reserves are more than 0.2 million ton. This paper analyzes the sulfur isotopic composition of these orebodies. The data show that the ore minerals (galena, sphalerite, pyrite) in these orebodies are enriched in heavy sulfur, with δ34SV-CDT values varying between 8.35‰ and 14.44‰, i.e. the δ34SV-CDT values of pyrite are between 12.81‰ and 14.44‰, the mean value is 13.40‰; the δ34SV-CDT values of sphalerite are range from 10.87‰ to 14.00‰, the mean value is 12.53‰; the δ34SV-CDT values of galena are range from 8.35‰ to 9.83‰, the mean value is 8.84‰, and they have the feature of δ34Spyrite>δ34Ssphalerite>δ34Sgalena, which indicates the sulfur isotope in ore-forming fluids has attained equilibrium. The δ34S V-CDT values of the deposit are close to those of sulfates from carbonate strata of different ages in the ore-field (15‰), which suggests that the sulfur in the ore-forming fluids should be derived from the thermo-chemical sulfate reduction of sulfates from the sedimentary strata.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1812402 and 41673056)。
文摘The Maoping Pb-Zn deposit(~3 Mt Pb+Zn reserves with grades of 12-30 wt%)is one of the largest Pb-Zn deposits in the Sichuan-Yunnan-Guizhou(SYG)metallogenic province,which has contributed a tremendous amount of lead and zinc resources for China.To obtain a further understanding of the sources of ore-forming materials and ore genesis of the deposit,S-Pb isotopes of sulfides and C-O isotopes of ore-stage calcites were systematically collected from representative orebodies at different elevations with a Finnigan MAT-253 mass spectrometer.The calcites separated from the sulfides of the NoⅠand NoⅡorebodies shared identical b13 CPDB values(-5.3 to-0.8‰)andδ18OSMOW values(+14.5 to+21.8‰)with those of the calcites in the SYG region,suggesting that CO2 in regional ore-forming fluids possibly had a homologous C-O source that originated from a ternary mixture of the dissolution of marine carbonate rocks,degassing process of the Emeishan mantle plume,and dehydroxylation of sedimentary organic matter.The No.Ⅰ-1 and No.Ⅰ-2 orebody was hosted in the same strata,but the sulfur source of No.Ⅰ-1 orebody(+13.1 to+19.0‰)with equilibrated sulfur fractionation(δ34Sspbaierite-<δ34Sgalena)and No.Ⅰ-2 orebody(+18.0 to+21.8‰)with sulfur equilibrium fractionation(δ34Sspnaierite>δ34-Sgalena)were different.They were derived from the allopatry thermochemical sulfate reduction(TSR)of overlying Carboniferous sulfates in the ore-hosting strata and local TSR of sulfates in the ore-bearing Upper Devonian Zaige Formation,respectively.The narrow and uniform Pb isotopic ratios of single galena grains collected from sulfides with 206Pb/204Pb of 18.713-18.759,207Pb/204Pb of 15.772-15.776 and 208Pb/204Pb of39.383-39.467 indicate a well-mixed metal source(s)that consist of Proterozoic Kunyang and Huili Group basement rocks and Devonian to Middle Permian ore-hosting sedimentary rocks.Besides,the late Permian Emeishan basalts are difficult to contribute metals for regional Pb-Zn mineralization despite a closely spatial relationship with the distribution of the Pb-Zn deposit.This is supported by Pb isotopic ratios plotting above the average upper crustal Pb evolution curves and staying far away from that of the agecorrected Emeishan basalts.Hence,taking into account of the similarities in tectonic setting,ore-hosting rock,ore assemblage,wall rock alteration,ore-controlling structure,and ore-forming materials and the differences in relationship with regional magmatism,fluid inclusion characteristic and ore grade between the Maoping deposit and typical MVT Pb-Zn deposit,the ore genesis of the Maoping deposit should be an MVT like Pb-Zn deposit.
基金funded by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18030302)the National Key R&D Program of China (2017YFC0602503)the National Natural Science Foundation of China (U1812402, 41430315, 41573011, 41625006)
文摘The Sichuan-Yunnan-Guizhou(SYG)metallogenic province of southwest China is one of the most important Zn-Pb ore zones in China,with^200 Mt ZnPb ores at mean grades of 10 wt.%Zn and 5 wt.%Pb.The source and mechanism of the regional Zn-Pb mineralization remain controversial despite many investigations that have been conducted.The Wusihe Zn-Pb deposit is a representative large-scale Zn-Pb deposit in the northern SYG,which mainly occurs in the Dengying Formation and yields Zn-Pb resources of^3.7 Mt.In this paper,Zn and S isotopes,and Fe and Cd contents of sphalerite from the Wusihe deposit were investigated in an attempt to constrain the controls on Zn and S isotopic variations,the potential sources of ore-forming components,and the possible mineralization mechanisms.Both theδ66Zn andδ34S values in sphalerite from the Wusihe deposit increase systematically from the bottom to the top of the strata-bound orebodies.Such spatial evolution inδ66Zn andδ34S values of sphalerite can be attributed to isotopic Rayleigh fractionation during sphalerite precipitation with temperature variations.The strong correlations between the Zn-S isotopic compositions and Fe-Cd concentrations in sphalerite suggest that their variations were dominated by a similar mechanism.However,the Rayleigh fractionation mechanism cannot explain the spatial variations of Fe and Cd concentrations of sphalerite in this deposit.It is noted that the bottom and top sphalerites from the strata-bound orebodies document contrasting Zn and S isotopic compositions which correspond to the Zn and S isotopic characteristics of basement rocks and host rocks,respectively.Therefore,the mixing of two-source fluids with distinct Zn-S isotopic signatures was responsible for the spatial variations of Zn-S isotopic compositions of sphalerite from the Wusihe deposit.The fluids from basement rocks are characterized by relatively lighter Zn(~0.2‰)and S(~5‰)isotopic compositions while the fluids from host rocks are marked by relatively heavier Zn(~0.6‰)and S(~15‰)isotopic compositions.
基金supported by the National Scientific and Technological Support Program of China (grant no:2006BAB01A11)
文摘The Erlihe Pb-Zn deposit is an important mine of the Pb-Zn metallogenic zone in the South Qinling Orogen.It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold.Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials.The Re-Os isotopic data of four pyrite samples construct an isochron,yielding a weighted average age of 226±17 Ma(mean square weighted deviation=1.7),which is considered the main mineralization age.A dioritic porphyrite vein sample,showing weaker mineralization,was also dated using the SHRIMP zircon UPb isotopic method to constrain the youngest metallogenic age of the ore deposit,because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field,but also the main ore bodies.The dioritic porphyrite sample yields a weighted mean ^(206)Pb/^(238)U age of 221±3 Ma,which is slightly younger than the Re-Os isotopic isochron age of the pyrites,considered as the upper age limit of the mineralization,namely the ending age of the mineralization.The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid,and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle.The Erlihe Pb-Zn deposit and associated dioritic porphyrite vein,important records of Qinling tectonic-magmatism-mineralization activities,were formed during the Triassic collisional orogeny processes.
基金ThisresearchprojectwasfundedbytheNationalNaturalScienceFoundationofChina (No .4 0 1 72 0 39)
文摘Analyses of fluid\|inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75-358 and Cl/Br 67-394, respectively, and this variation trend coincides with the seawater evaporation trajectory on the basis of the Na/Br and Cl/Br ratios. The average Cl/Br and Na/Br ratios of mineralizing fluids are 185 and 173 respectively, which are very close to the ratios (120 and 233) of the residual evaporated seawater past the point of halite precipitation. It is suggested that the original mineralizing brine was derived from highly evaporated seawater with a high salinity. However, the inclusion fluids have absolute Na values of \{69.9\}-\{2606.2\} mmol kg\+\{-1\} and Cl values of \{106.7\}-\{1995.5\} mmol kg\+\{-1\}. Most of the values are much less than those of seawater: Na, 485 mmol kg\+\{-1\} and Cl, 566 mmol kg\+\{-1\}, respectively; the salinity measured from fluid inclusions of the deposits ranges from \{2.47 wt%\} to \{15.78 wt%\} NaCl equiv. The mineralizing brine has been diluted. The \{δ\{\}\+\{18\}O\} and δD values of ore\|forming fluids vary from \{-8.21‰\} to \{9.51‰\} and from \{-40.3‰\} to \{-94.3‰\}, respectively. The δD values of meteoric water in this region varied from \{-80‰\} to \{-100‰\} during the Jurassic. This evidenced that the ore\|forming fluids are the mixture of seawater and meteoric water. Highly evaporated seawater was responsible for leaching and extracting Pb, Zn and Fe, and mixed with and diluted by descending meteoric water, which resulted in the formation of ores.
文摘The Tianbaoshan Pb\|Zn deposit in Sichuan Province, exhibiting open\|space\|filling and/or replacement textures, occurs as being of vein style in the Sinian (Late Proterozoic) carbonate rocks, and is simple in ore composition. A systematic study of lead isotope and rare\|earth elements reveals that the ore\|forming materials were derived from multiple sources. The ultimate source of the sulfur in all stages is seawater sulfate but the reducing mechanisms are different. The carbon was derived from marine carbonate and organic matter. The ore\|forming fluid, meteoric in origin, belongs to a Ca\+\{2+\}\|Mg\+\{2+\}\|Cl\+-\|HCO\+-\-3 type of weak acidic to alkalic solutions with a salinity of about 5 wt% NaCl. The ore was formed at the depth of about 1 km from 150 to 250℃ during the main stage of ore deposition. The heated meteoric water, after extracting ore materials from wall rocks, evolved into ore\|forming solution with a low salinity, in which metals were transported as chloride complexes such as PbCl, ZnCl and ZnCl. The metal\|bearing solution moved upward along deep faults to low\|pressure zones, where the metal ions reacted with reduced sulfur and were precipitated as sulfide minerals. The textures of the minerals were controlled by the rate at which the reduced sulfur was supplied.
基金supported by the National 973 project(No.2014CB440905)
文摘The Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province in the western Yangtze Block, is a key component of the low-temperature metallogenic domain in South China. In this area, more than 400 Pb-Zn deposits have been discovered, and the total proven reserves are up to 260 million tons with lead and zinc grade reaching 10%, even up to 30%.