期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Development and evaluation of Panax notoginseng saponins contained in an in situ pHtriggered gelling system for sustained ocular posterior segment drug delivery 被引量:2
1
作者 Peng Lu Renxing Wang +10 位作者 Yue Xing Yanquan Gao Qingqing Zhang Bin Xing Ying Zhang Changxiang Yu Xinfu Cai Qiang Shang Dereje Kebebe Jiaxin Pi Zhidong Liu 《Acupuncture and Herbal Medicine》 2021年第2期107-121,共15页
Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940... Objective:This study aimed to lay the foundation for the research on Panax notoginseng saponins(PNS)in pH-sensitive in situ gel and the development and improvement of related preparations.Methods:We used Carbopol■940,a commonly used pH-sensitive polymer,and the thickener hydroxypropyl methylcellulose(HPMC E4M)as an ophthalmic gel matrix to prepare an ophthalmic in situ gel of PNS.In addition,formula optimization was performed by assessing gelling capability with the results of in vitro release studies.In vitro(corneal permeation,rheological,and stability)and in vivo(ocular irritation and preliminary pharmacokinetics in the vitreous)studies were also performed.Results:The results demonstrated that the in situ gelling systems containing PNS showed a sustained release of the drug,making it an ideal ocular delivery system for improving posterior ocular bioavailability.Conclusions:This study lays the foundation for the research of PNS contained in an in situ pH-triggered gel as well as the development and improvement of related preparations.It concurrently traditional Chinese medicine with a contemporary in situ gelling approach to provide new directions for the treatment of posterior ocular diseases such as diabetic retinopathy. 展开更多
关键词 Carbopol■940 Hydroxypropyl methylcellulose Panax notoginseng saponins pH-triggered gelling system Sustained release drug delivery
下载PDF
Formation strategies,mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes 被引量:4
2
作者 Xin Liu Guihua Huang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2013年第6期319-328,共10页
pH-sensitive liposomes are designed to specifically triggered release the loaded drugs in response to the change of pH in the surrounding serum.So pH-sensitive liposomes can effectively deliver drug or gene fragments ... pH-sensitive liposomes are designed to specifically triggered release the loaded drugs in response to the change of pH in the surrounding serum.So pH-sensitive liposomes can effectively deliver drug or gene fragments into the cytoplasm via the endocytotic pathway.Furthermore,pH-sensitive liposomes can be successfully used in clinical if they enable the encapsulated drugs to be targeted to pathological tissues(such as primary tumors,metastases,local ischemia,inflammation and infection)of the body in which pH is less than the normal physiological value.That’s the reason why a growing amount of literatures described the development and applications of pH-sensitive liposomes to improve the therapeutic index of the encapsulated active ingredients.In this review,the commonly used pH-sensitive molecules for pH-sensitive liposome and the mechanisms of intracellular delivery of pH-sensitive liposomes were addressed.Besides,the potential clinical applications were fully discussed in detail with an expectation to contribute to the clinical research of pH-sensitive liposomes. 展开更多
关键词 pH-sensitive liposomes Triggered release Drug delivery Gene therapy VACCINE Magnetic resonance imaging(MRI)
下载PDF
Validation of kinetic modeling of progesterone release from polymeric membranes
3
作者 Analia Irma Romero Mercedes Villegas +3 位作者 Alicia Graciela Cid Mónica Liliana Parentis Elio Emilio Gonzo José María Bermúdez 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2018年第1期54-62,共9页
Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved.... Mathematical modeling in drug release systems is fundamental in development and optimization of these systems, since it allows to predict drug release rates and to elucidate the physical transport mechanisms involved. In this paper we validate a novel mathematical model that describes progesterone(Prg) controlled release from poly-3-hydroxybutyric acid(PHB) membranes. A statistical analysis was conducted to compare the fitting of our model with six different models and the Akaike information criterion(AIC) was used to find the equation with best-fit. A simple relation between mass and drug released rate was found,which allows predicting the effect of Prg loads on the release behavior. Our proposed model was the one with minimum AIC value, and therefore it was the one that statistically fitted better the experimental data obtained for all the Prg loads tested. Furthermore, the initial release rate was calculated and therefore, the interface mass transfer coefficient estimated and the equilibrium distribution constant of Prg between the PHB and the release medium was also determined. The results lead us to conclude that our proposed model is the one which best fits the experimental data and can be successfully used to describe Prg drug release in PHB membranes. 展开更多
关键词 Mathematical models Model VALIDATION DRUG delivery/release Mass transfer coefficient EQUILIBRIUM distribution constant
下载PDF
In situ-prepared homogeneous supramolecular organic framework drug delivery systems(sof-DDSs):Overcoming cancer multidrug resistance and controlled release 被引量:5
4
作者 Jia Tian Chi Yao +6 位作者 Wen-Lin Yang Lei Zhang Dan-Wei Zhang Hui Wang Fan Zhang Yi Liu Zhan-Ting Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期798-806,共9页
Water-soluble three-dimensional porous supramolecular organic frameworks(SOFs) have been demonstrated as a new generation of homogeneous polycationic platforms for anti-cancer drug delivery.The new SOF drug delivery... Water-soluble three-dimensional porous supramolecular organic frameworks(SOFs) have been demonstrated as a new generation of homogeneous polycationic platforms for anti-cancer drug delivery.The new SOF drug delivery systems(sof-DDSs) can adsorb dianionic pemetrexed(PMX),a clinically used chemotherapeutic agent instantaneously upon dissolving in water,which is driven by both electrostatic attraction and hydrophobicity.The in situ-prepared PMX@SOFs are highly stable and can avoid important release of the drug during plasm circulation and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells to enter the cancer cells.Acidic microenvironment of cancer cells promotes the release of the drug in cancer cells.Both in vitro and in vivo studies have revealed that sofDDSs considerably improve the treatment efficacy of PMX,leading to 6-12-fold reduction of the IC50 values,as compared with that of PMX alone.The new drug delivery strategy omits the loading process required by most of reported nanoparticle-based delivery systems and thus holds promise for future development of low-cost drug delivery systems 展开更多
关键词 Supramolecular organic framework In situ preparation Drug delivery Controlled release Pemetrexed Human breast cancer Multidrug resistance
原文传递
Loading-free supramolecular organic framework drug delivery systems(sof-DDSs) for doxorubicin:normal plasm and multidrug resistant cancer cell-adaptive delivery and release 被引量:6
5
作者 Chi Yao Jia Tian +4 位作者 Hui Wang Dan-Wei Zhang Yi Liu Fan Zhang Zhan-Ting Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期893-899,共7页
Four water-soluble porous supramolecular organic framework drug delivery systems(sof-DDSs) have been used to adsorb doxorubicin(DOX) in water at physiological pH of 7.4,which is driven exclusively by hydrophobicit... Four water-soluble porous supramolecular organic framework drug delivery systems(sof-DDSs) have been used to adsorb doxorubicin(DOX) in water at physiological pH of 7.4,which is driven exclusively by hydrophobicity.The resulting complexes DOX@SOFs are formed instantaneously upon dissolving the components in water.The drug-adsorbed sof-DDSs can undergo plasm circulation with important maintenance of the drug and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells.DOX is released readily in the cancer cells due to the protonation of its amino group in the acidic medium of cancer cells.In vitro and in vivo experiments reveal that the delivery of SOF-a-d remarkably improve the cytotoxicity of DOX for the MCF-7/Adr cells and tumors,leading to 13-19-fold reduction of the 1C_(50)values as compared with that of DOX.This new sof-DDSs strategy omits the indispensable loading process required by most of reported nano-scaled carriers for neutral hydrophobic chemotherapeutic agents,and thus should be highly valuable for future development of low-cost delivery systems. 展开更多
关键词 Supramolecular organic framework Doxorubicin Drug delivery In situ preparation Hydrophobicity Human breast cancer Controlled release
原文传递
Sustained release of methyl viologen from a novel nanoparticle delivery system with double shells of silica and PLGA
6
作者 Hirokazu Miyoshi 《生物物理学报》 CAS CSCD 北大核心 2009年第S1期297-298,共2页
The use of nanotechnology in drug delivery is a rapidly expanding field. Biodegradable or nontoxic nanomaterials have the most promising application potentials in nanomedicine.
关键词 Sustained release of methyl viologen from a novel nanoparticle delivery system with double shells of silica and PLGA SIO
原文传递
Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy:From intrinsic physicochemical properties to external modification 被引量:7
7
作者 Heng Mei Shengsheng Cai +3 位作者 Dennis Huang Huile Gao Jun Cao Bin He 《Bioactive Materials》 SCIE 2022年第2期220-240,共21页
The considerable development of carrier-free nanodrugs has been achieved due to their high drug-loading capability,simple preparation method,and offering“all-in-one”functional platform features.However,the native de... The considerable development of carrier-free nanodrugs has been achieved due to their high drug-loading capability,simple preparation method,and offering“all-in-one”functional platform features.However,the native defects of carrier-free nanodrugs limit their delivery and release behavior throughout the in vivo journey,which significantly compromise the therapeutic efficacy and hinder their further development in cancer treatment.In this review,we summarized and discussed the recent strategies to enhance drug delivery and release of carrier-free nanodrugs for improved cancer therapy,including optimizing the intrinsic physicochemical properties and external modification.Finally,the corresponding challenges that carrier-free nanodrugs faced are discussed and the future perspectives for its application are presented.We hope this review will provide constructive information for the rational design of more effective carrier-free nanodrugs to advance therapeutic treatment. 展开更多
关键词 Carrier-free nanodrugs Drug delivery and release Intrinsic physicochemical properties External modification Therapeutic efficacy
原文传递
Gather wisdom to overcome barriers:Well-designed nano-drug delivery systems for treating gliomas 被引量:5
8
作者 Jiwei Cui Yuanxin Xu +4 位作者 Haiyan Tu Huacong Zhao Honglan Wang Liuqing Di Ruoning Wang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第3期1100-1125,共26页
Due to the special physiological and pathological characteristics of gliomas,most therapeutic drugs are prevented from entering the brain.To improve the poor prognosis of existing therapies,researchers have been conti... Due to the special physiological and pathological characteristics of gliomas,most therapeutic drugs are prevented from entering the brain.To improve the poor prognosis of existing therapies,researchers have been continuously developing non-invasive methods to overcome barriers to gliomas therapy.Although these strategies can be used clinically to overcome the blood-brain barrier(BBB),the accurate delivery of drugs to the glioma lesions cannot be ensured.Nano-drug delivery systems(NDDS)have been widely used for precise drug delivery.In recent years,researchers have gathered their wisdom to overcome barriers,so many well-designed NDDS have performed prominently in preclinical studies.These meticulous designs mainly include cascade passing through BBB and targeting to glioma lesions,drug release in response to the glioma microenvironment,biomimetic delivery systems based on endogenous cells/extracellular vesicles/protein,and carriers created according to the active ingredients of traditional Chinese medicines.We reviewed these well-designed NDDS in detail.Furthermore,we discussed the current ongoing and completed clinical trials of NDDS for gliomas therapy,and analyzed the challenges and trends faced by clinical translation of these well-designed NDDS. 展开更多
关键词 GLIOMA Blood-brain barrier Non-invasive strategies Nano-drug delivery systems Cascade targeting Responsive delivery and release Biomimetic designs Active ingredients Traditional Chinese medicine
原文传递
Self-assembled Nanoparticles based on Folic Acid Modifi ed Carboxymethyl Chitosan Conjugated with Targeting Antibody 被引量:2
9
作者 虎征宇 ZHENG Hua +6 位作者 LI Dan XIONG Xiong TAN Mingyuan HUANG Dan GUO Xing 张雪琼 严晗 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期446-453,共8页
Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldru... Nanoparticles conjugated with antibody were designed as active drug delivery system to reduce the toxicity and side effects of drugs for acute myeloid leukemia(AML).Moreover,methotrexate(MTX)was chosen as modeldrug and encapsulate within folic acid modified carboxymethylchitosan(FACMCS)nanoparticles through self-assembling.The chemicalstructure,morphology,release and targeting of nanoparticles were characterized by routine detection.It is demonstrated that the mean diameter is about 150 nm,the release rate increases with the decreasing of p H,the binding rate of CD33 antibody and FA-CMCS nanoparticles is about 5:2,and nanoparticles can effectively bind onto HL60 cells in vitro.The experimentalresults indicate that the FA-CMCS nanoparticles conjugated with antibody may be used as a potentialp Hsensitive drug delivery system with leukemic targeting properties. 展开更多
关键词 chitosan nanoparticles targeted drug delivery cancer controlled release self-assembly pH-sensitive
下载PDF
Enhancement of gemcitabine against pancreatic cancer by loading in mesoporous silica vesicles 被引量:2
10
作者 Jun-Tao Dai Yu Zhang +6 位作者 Heng-Chao Li Yong-Hui Deng Ahmed A. Elzatahry Abdulaziz Alghamdi De-Liang Fu Yong-Jian Jiang Dong-Yuan Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第3期531-536,共6页
Gemcitabine(Gem) is currently the first-line chemotherapeutic drug in management of pancreatic cancer, however the therapeutic efficacy of Gem is limited due to its short half-life and poor cell membrane permeabilit... Gemcitabine(Gem) is currently the first-line chemotherapeutic drug in management of pancreatic cancer, however the therapeutic efficacy of Gem is limited due to its short half-life and poor cell membrane permeability. Here we designed mesoporous silica vesicles(MSVs) with large pore sizes as a novel drug delivery system. The MSVs were synthesized using cetyltrimethyl ammonium bromide(CTAB) as a structure-directing agent, tetraethoxysilane(TEOS) as silica source in n-hexane/water biliquid system. By virtue of the large pore size and large pore volume of the MSVs, Gem was loaded into the mesoporous of MSVs via "nanocasting" method. In vitro drug release experiments of gemcitabineloaded MSVs showed an accelerating release of gemcitabine in acidic condition. These fluorescently labeled MSVs could be effectively internalized by both a human(BxPC-3) and a mouse pancreatic cancer cell lines(Pan02). Additionally, some MSVs could even reach the nuclei of the pancreatic cancer cells. Cell viability assays demonstrated that gemcitabine-loaded MSVs exhibited enhanced anticancer activity in inhibiting the proliferation of Bx PC-3 and Pan02 cells compared with free Gem, while the MSVs alone showed no significant cytotoxicity. Our results indicate that our synthesized MSVs might represent a promising novel drug delivery platform for the treatment of pancreatic cancer. 展开更多
关键词 Gemcitabine Mesoporous silica vesicles Drug delivery Pancreatic cancer Drug release
原文传递
Nanotechnology combining photoacoustic kinetics and chemical kinetics for thrombosis diagnosis and treatment
11
作者 Hao Tian Lin Lin +3 位作者 Zhaojing Ba Fangchao Xue Yanzhao Li Wen Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3665-3674,共10页
Thrombotic disease is a major problem that endangers human health. At present, MRI and CT are commonly used clinically to diagnose thrombosis, and thrombolytic drugs are used for treatment), but the diagnosis time is ... Thrombotic disease is a major problem that endangers human health. At present, MRI and CT are commonly used clinically to diagnose thrombosis, and thrombolytic drugs are used for treatment), but the diagnosis time is lagging, the utilization of drugs is low, and the resulting systemic toxicity problems such as side effects lead to poor treatment effects. Nanotechnology combining photoacoustic dynamics and chemical dynamics has shown great application value in tumor targeting, diagnosis, detection and treatment. It has also become a new direction in the diagnosis and treatment of thrombotic diseases, and has created new applications in the field of nanomaterials. This review summarizes the new progress of this combination in the diagnosis and treatment of thrombotic diseases according to the differences in the construction of the nanotherapy system, at the same time, we put forward some new problems and prospects for the integration of thrombosis diagnosis and treatment. 展开更多
关键词 NANOTECHNOLOGY Photoacoustic kinetics Chemical kinetics Drug delivery and release Thrombosis disease
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部