期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
RESEARCH ON MUNICIPAL WATER DEMANDS FORECAST 被引量:3
1
作者 赵新华 田一梅 陈春芳 《Transactions of Tianjin University》 EI CAS 2001年第1期21-25,共5页
Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand du... Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation. 展开更多
关键词 water supply short-term demand forecast time-series analysis
下载PDF
A Research on Demands Forecasting and Personnel Training of Tourism Talents A Case Study of Zhejiang Province
2
作者 YE Jing ZHU Liang-liang 《Sino-US English Teaching》 2013年第9期700-706,共7页
By analyzing the recent 15 years' statistical data of Zhejiang tourism human resources, this paper analyzes the status of Zhejiang tourism talents. ARIMA (Autoregressive Integrated Moving Average) model is a method... By analyzing the recent 15 years' statistical data of Zhejiang tourism human resources, this paper analyzes the status of Zhejiang tourism talents. ARIMA (Autoregressive Integrated Moving Average) model is a method of time series prediction. This paper predicts the trends of the next three years' demands of Zhejiang tourism talents based on ARIMA model in order to promote the tourism in Zhejiang Province. According to the demands forecasting, the number of the employees required by the hotels is 10 times of travel agencies in 2015. At last, some solutions and suggestions are provided such as strengthening the talents training establishing tourism talents mobility mechanism and improving tourism talents excitation mechanism 展开更多
关键词 ARIMA (Autoregressive Integrated Moving Average) tourism talents demands forecasting
下载PDF
Revenue management method and critical techniques of railway passenger transport
3
作者 Xinghua Shan Xiaoyan Lv +2 位作者 Jinfei Wu Shuo Zhao Junfeng Zhang 《Railway Sciences》 2024年第5期636-649,共14页
Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in Chi... Purpose–Revenue management(RM)is a significant technique to improve revenue with limited resources.With the macro environment of dramatically increasing transit capacity and rapid railway transport development in China,it is necessary to involve the theory of RM into the operation and decision of railway passenger transport.Design/methodology/approach–This paper proposes the theory and framework of generalized RM of railway passenger transport(RMRPT),and the thoughts and methods of the main techniques in RMRPT,involving demand forecasting,line planning,inventory control,pricing strategies and information systems,are all studied and elaborated.The involved methods and techniques provide a sequential process to help with the decision-making for each stage of RMRPT.The corresponding techniques are integrated into the information system to support practical businesses in railway passenger transport.Findings–The combination of the whole techniques devotes to railway benefit improvement and transit resource utilization and has been applied into the practical operation and organization of railway passenger transport.Originality/value–The development of RMRPT would provide theoretical and technical support for the improvement of service quality as well as railway benefits and efficiency. 展开更多
关键词 Revenue management Railway passenger transport Demand forecasting Line planning Inventory control Pricing strategy
下载PDF
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
4
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
下载PDF
System Dynamics Approach to Urban Water Demand Forecasting—A Case Study of Tianjin 被引量:3
5
作者 张宏伟 张雪花 张宝安 《Transactions of Tianjin University》 EI CAS 2009年第1期70-74,共5页
A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elem... A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elements. As an example, Tianjin water resources system dynamic model was set up to forecast water resources demand of the planning years. The practical verification showed that the relative error was lower than 10%. Fur-thermore, through the comparison and analysis of the simulation results under different development modes pre-sented in this paper, the forecasting results of the water resources demand of Tianjin was achieved based on sustain-able utilization strategy of water resources. 展开更多
关键词 system dynamics water resources demand forecasting NONLINEARITY
下载PDF
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:3
6
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model ARIMA model Leslie matrix Monte-Carlo method
下载PDF
Forecast of Air Traffic Controller Demand Based on SVR and Parameter Optimization 被引量:2
7
作者 ZHANG Yali LI Shan ZHANG Honghai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期959-966,共8页
As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model b... As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system. 展开更多
关键词 air traffic controller demand forecast support vector regression(SVR) grid search cross-validation
下载PDF
Spare Parts Demand Forecasting:a Review 被引量:1
8
作者 曹文斌 宋文渊 +1 位作者 韩玉成 武禹陶 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期340-344,共5页
Spare parts are very common in industry and military fields, and the investigations of spare parts demand forecasting methods have draws much attention in recent years. However,to the best of our knowledge,only few pa... Spare parts are very common in industry and military fields, and the investigations of spare parts demand forecasting methods have draws much attention in recent years. However,to the best of our knowledge,only few papers reviewed the forecasting papers systematically. This paper is an attempt to provide a novel and comprehensive view to summarize these methods. A new framework was proposed to classify the demand forecasting methods into four categories,including empirical methods,methods based on historical data,analytical methods and simulation methods. Some typical literatures related to each category were reviewed.Moreover, a general spare parts forecasting procedure was summarized and some evaluation criteria were presented. Finally,characteristics of different forecasting methods and some avenues for further research were illustrated. This work provides the managers with a systematical idea about the spare parts demand forecasting and it can be used in practical applications. 展开更多
关键词 spare parts demand forecasting methods maintenance and support
下载PDF
Synthetic Reconstruction of Water Demand Time Series for Real Time Demand Forecasting 被引量:3
9
作者 Bruno M.Brentan Lubienska C.L.J.Ribeiro +2 位作者 Edevar Luvizotto Jr. Danilo C.Mendonca Jose M.Guidi 《Journal of Water Resource and Protection》 2014年第15期1437-1443,共7页
The forecasting of the demand applied to water supply systems has been an important tool to realize time control. The use of the time series to do the forecasting of the demand is the main way that has been used by re... The forecasting of the demand applied to water supply systems has been an important tool to realize time control. The use of the time series to do the forecasting of the demand is the main way that has been used by researchers. By this way, the need of a complete time demand series increases. This work presents two ways to reconstruct the water demand time series synthetically, using the Average Reconstruction Method and Fourier Method. Both the methods were considered interesting to do the synthetic reconstruction and able to complete the time series, but the Fourier Method showed better results and a better fitness to approximation of the water consumption pattern. 展开更多
关键词 Water Demand forecasting Synthetic Reconstruction Water Supply Systems
下载PDF
Forecasting tourism demand by extracting fuzzy Takagi-Sugeno rules from trained SVMs 被引量:1
10
作者 Xin Xu Rob Law +1 位作者 Wei Chen Lin Tang 《CAAI Transactions on Intelligence Technology》 2016年第1期30-42,共13页
Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been wide... Tourism demand forecasting has attracted substantial interest because of the significant economic contributions of the fast-growing tourism industry. Although various quantitative forecasting techniques have been widely studied, highly accurate and understandable forecasting models have not been developed. The present paper proposes a novel tourism demand forecasting method that extracts fuzzy Takagi-Sugeno (T-S) rules from trained SVMs. Unlike previous approaches, this study uses fuzzy T-S models extracted from the outputs of trained SVMs on tourism data. Owing to the symbolic fuzzy rules and the generalization ability of SVMs, the extracted fuzzy T-S rules exhibit high forecasting accuracy and include understandable pre-condition parts for practitioners. Based on the tourism demand forecasting problem in Hong Kong SAR, China as a case study, empirical findings on tourist arrivals from nine overseas origins reveal that the proposed approach performs comparably with SVMs and can achieve better prediction accuracy than other forecasting techniques for most origins. The findings demonstrated that decision makers can easily interpret fuzzy T-S rules extracted from SVMs. Thus, the approach is highly beneficial to tourism market management. This finding demonstrates the excellent scientific and practical values of the proposed approach in tourism demand forecasting. 展开更多
关键词 Fuzzy modeling Rule extraction Support vector machines Tourism demand forecasting
下载PDF
Improved grey-based approach for power demand forecasting
11
作者 林佳木 《Journal of Chongqing University》 CAS 2006年第4期229-234,共6页
Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1).... Grey theory is a multidisciplinary and generic theory to cope with systems of poor or deficient information. We proposed in this paper an improved grey method (GM) to overcome the disadvantages of the general GM(1,1). In the improved GM(1,1), a new background value formula is deduced and Markov-chain sign estimation is imbedded into the residual modification model. We tested the efficiency and accuracy of our model by applying it to the power demand forecasting in Taiwan. Experimental results demonstrate the new method has obviously a higher prediction accuracy than the general model. 展开更多
关键词 grey theory improved GM(1 1) Markov-chain power demand forecasting
下载PDF
Equipment Maintenance Material Demand Forecasting Based on Gray-Markov Model
12
作者 毕坤鹏 张宏运 +1 位作者 晏国辉 唐娜 《Journal of Donghua University(English Edition)》 EI CAS 2014年第6期824-826,838,共4页
Maintenance material reserves must keep an appropriate scale,in order to meet the possible demand of support objectives.According to the sequence of maintenance material consumption,this paper establishes a Gray-Marko... Maintenance material reserves must keep an appropriate scale,in order to meet the possible demand of support objectives.According to the sequence of maintenance material consumption,this paper establishes a Gray-Markov forecasting model by combining Gray system theory and Markov model. Few data are needed in the proposed Gray-Markov forecasting model which has high prediction precision by involving small parameters. The performance of Gray-Markov forecasting model was demonstrated using practical application and the model was proved to be a valid and accurate forecasting method. This Gray-Markov forecasting model can provide reference for making material demand plan and determining maintenance material reserves. 展开更多
关键词 maintenance material gray-Markov demand forecasting material reserves
下载PDF
Regional Logistics Demand Forecast Based on Least Square and Radial Basis Function
13
作者 WEI Leqin ZHANG Anguo 《Journal of Donghua University(English Edition)》 EI CAS 2020年第5期446-454,共9页
Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the trad... Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies.It has the characteristics of a small amount of data and being nonlinear,so the traditional prediction method can not guarantee the accuracy of prediction.Taking Xiamen City as an example,this paper selects the primary industry,the secondary industry,the tertiary industry,the total amount of investment in fixed assets,total import and export volume,per capita consumption expenditure,and the total retail sales of social consumer goods as the influencing factors,and uses a combining model least square and radial basis function(LS-RBF)neural network to analyze the related data from years 2000 to 2019,so as to predict the logistics demand from years 2020 to 2024.The model can well fit the training data,and the experimental results obtained from the comparison between the predicted value and the actual value in 2019 show that the error rate is very small.Therefore,the prediction results are reasonable and reliable.This method has high prediction accuracy,and it is suitable for irregular regional logistics demand forecast. 展开更多
关键词 regional logistics demand forecast least square and radial basis function(LS-RBF)
下载PDF
Research on Logistics Demand Forecast in Southeast Asia
14
作者 Thi Yen Nguyen 《World Journal of Engineering and Technology》 2020年第3期249-256,共8页
This article predicts Southeast Asia’s logistics needs from a Southeast Asian logistics development perspective. This is not only an important prerequisite for supporting Southeast Asia’s trade policy, but also prom... This article predicts Southeast Asia’s logistics needs from a Southeast Asian logistics development perspective. This is not only an important prerequisite for supporting Southeast Asia’s trade policy, but also promoting the development of Southeast Asia’s logistics industry, building logistics infrastructure and improving the level of logistics services. Due to differences in economic development levels, trade structures, infrastructure construction and logistics development levels of Southeast Asian countries. Therefore, considering the actual situation of Southeast Asian countries, this article selected 21 cities in Southeast Asia as the research object. Use L-OD logistics demand forecasting method to forecast logistics demand in Southeast Asia. Obtain the amount of logistics occurrence and attraction in 21 cities in Southeast Asia in the future. And construct a double constrained gravity model to predict logistics distribution in Southeast Asia. The forecast results provide scientific data support for future logistics development planning in Southeast Asia. 展开更多
关键词 Southeast Asian LOGISTICS Demand forecast Double Constrained Gravity Model
下载PDF
FORECAST DEMAND FOR AUTOMOBILES
15
作者 Ying Zi 《China's Foreign Trade》 1996年第7期16-16,共1页
China’s demand for automobiles fallsinto three types:trucks,buses andcars.According to statistics fromdepartment concerned,China’s demand andquantity in the next 15 years is as follows: 1. The demand for trucks will... China’s demand for automobiles fallsinto three types:trucks,buses andcars.According to statistics fromdepartment concerned,China’s demand andquantity in the next 15 years is as follows: 1. The demand for trucks will growsteadily,in line with the growth of the nationaleconomy.The development of 展开更多
关键词 forecast DEMAND FOR AUTOMOBILES WILL LINE
下载PDF
Design of an Evacuation Demand Forecasting Module for Hurricane Planning Applications
16
作者 Gary P. Moynihan Daniel J. Fonseca 《Journal of Transportation Technologies》 2016年第5期257-276,共20页
This paper discusses the development and implementation of an evacuation demand forecasting module that was incorporated into a comprehensive decision support system for the planning and management of contraflow opera... This paper discusses the development and implementation of an evacuation demand forecasting module that was incorporated into a comprehensive decision support system for the planning and management of contraflow operations in the Gulf of Mexico. Contraflow implies the reversing of one direction of a highway in order to permit a substantially increased travel demand exiting away from an area impacted by a natural disaster or any other type of catastrophic event. Correctly estimating the evacuation demand originated from such a catastrophic event is critical to a successful contraflow implementation. One problem faced by transportation officials is the arranging of the different stages of this complex traffic procedure. Both the prompt deployment of resources and personnel as well as the duration of the actual contraflow affect the overall effectiveness, safety and cost of the evacuation event. During this project, researchers from the University of Alabama developed an integral decision support system for contraflow evacuation planning to assist the Alabama Department of Transportation Maintenance Bureau in the evaluation and planning of contraflow operations oriented to mitigate the evacuation burdens of a hurricane event. This paper focuses on the design of the demand forecasting module of such a decision support system. 展开更多
关键词 Hurricane Evacuation Road Capacity Demand forecasting Decision Support System
下载PDF
Logistics Demand Forecast of Fresh Food E-Commerce Based on Bi-LSTM Model
17
作者 Shifeng Ni Yan Peng Zijian Liu 《Journal of Computer and Communications》 2022年第9期51-65,共15页
Fresh products have the characteristics of perishable, small batch and high frequency. Therefore, for fresh food e-commerce enterprises, market demand forecasting is particularly important. This paper takes the sales ... Fresh products have the characteristics of perishable, small batch and high frequency. Therefore, for fresh food e-commerce enterprises, market demand forecasting is particularly important. This paper takes the sales data of a fresh food e-commerce enterprise as the logistics demand, analyzes the influence of time and meteorological factors on the demand, extracts the characteristic factors with greater influence, and proposes a logistics demand forecast scheme of fresh food e-commerce based on the Bi-LSTM model. The scheme is compared with other schemes based on the BP neural network and LSTM neural network models. The experimental results show that the Bi-LSTM model has good prediction performance on the problem of logistics demand prediction. This facilitates further research on some supply chain issues, such as business decision-making, inventory control, and logistics capacity planning. 展开更多
关键词 Data Analysis Bi-LSTM Fresh Food E-Commerce Logistics Demand forecast
下载PDF
Research on inventory management and demand forecasting
18
作者 Qian Kun Zhang Shiwei Shen Hongtao 《International Journal of Technology Management》 2014年第1期57-59,共3页
With the rapid economic development and the increasing speed and scale of grid construction, material procurement and management, cost control is facing new demands and challenges.This paper proposes on innovative man... With the rapid economic development and the increasing speed and scale of grid construction, material procurement and management, cost control is facing new demands and challenges.This paper proposes on innovative management and forecasting methods, from inventory management and demand forecasting perspective supplies,through these two key nodes in-depth research and analysis, this paper provides a theoretical support for the realization of effective materials management. 展开更多
关键词 inventory management demand forecasting reverse logistics
下载PDF
Supply Chain Demand Forecast Based on SSA-XGBoost Model
19
作者 Shifeng Ni Yan Peng +1 位作者 Ke Peng Zijian Liu 《Journal of Computer and Communications》 2022年第12期71-83,共13页
Supply chain management usually faces problems such as high empty rate of transportation, unreasonable inventory management, and large material consumption caused by inaccurate market demand forecasts. To solve these ... Supply chain management usually faces problems such as high empty rate of transportation, unreasonable inventory management, and large material consumption caused by inaccurate market demand forecasts. To solve these problems, using artificial intelligence and big data technology to achieve market demand forecasting and intelligent decision-making is becoming a strategic technology trend of supply chain management in the future. Firstly, this paper makes a visual analysis of the historical data of the Stock Keeping Unit (SKU);Then, the characteristic factors affecting the future demand are constructed from the storage level, product level, historical usage of SKU, etc;Finally, a supply chain demand forecasting algorithm based on SSA-XGBoost model has proposed around three aspects of feature engineering, parameter optimization and model integration, and is compared with other machine learning models. The experiment shows that the forecasting result of SSA-XGBoost forecasting model is highly consistent with the actual value, so it is of practical significance to adopt this forecasting model to solve the supply chain demand forecasting problem. 展开更多
关键词 Data Visualization Analysis SSA-XGBoost Supply Chain Demand forecast
下载PDF
A Study on an Extensive Hierarchical Model for Demand Forecasting of Automobile Components
20
作者 Cisse Sory Ibrahima Jianwu Xue Thierno Gueye 《Journal of Management Science & Engineering Research》 2021年第2期40-48,共9页
Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and beh... Demand forecasting and big data analytics in supply chain management are gaining interest.This is attributed to the wide range of big data analytics in supply chain management,in addition to demand forecasting,and behavioral analysis.In this article,we studied the application of big data analytics forecasting in supply chain demand forecasting in the automotive parts industry to propose classifications of these applications,identify gaps,and provide ideas for future research.Algorithms will then be classified and then applied in supply chain management such as neural networks,k-nearest neighbors,time series forecasting,clustering,regression analysis,support vector regression and support vector machines.An extensive hierarchical model for short-term auto parts demand assess-ment was employed to avoid the shortcomings of the earlier models and to close the gap that regarded mainly a single time series.The concept of extensive relevance assessment was proposed,and subsequently methods to reflect the relevance of automotive demand factors were discussed.Using a wide range of skills,the factors and co-factors are expressed in the form of a correlation characteristic matrix to ensure the degree of influence of each factor on the demand for automotive components.Then,it is compared with the existing data and predicted the short-term historical data.The result proved the predictive error is less than 6%,which supports the validity of the prediction method.This research offers the basis for the macroeconomic regulation of the government and the production of auto parts manufacturers. 展开更多
关键词 Demand forecasting Supply chain management Automobile components ALGORITHM Continuous time model Demand forecasting Supply chain management Automobile components Algorithm Continuous time model
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部